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ABSTRACT

Cardiovascular diseases are disorders affecting the blood vessels and the
heart. According to the World Health Organization, cardiovascular diseases are one of the
leading causes of death worldwide. They are responsible for over 17.1 million deaths per

year worldwide, representing 31.5% of deaths » 2.

Atherosclerosis, a chronic
inflammatory disorder affecting large arteries, is the underlying cause of many
cardiovascular diseases. Plaque rupture is a serious complication of advanced
atherosclerosis, often leading to life-threatening clinical consequences such as myocardial
infarction (heart attack) or stroke. 75% of newly developed myocardial infarction cases
are caused by atherosclerotic plaque rupture. It affects approximately 1.1 million people
in the USA per year, with a 40% fatality rate; 220,000 of these deaths occur without
hospitalization. Over the past few decades, the mechanisms of atherosclerotic plaque

progression and formation have been widely studied. However, due to the complexity of

the process, plaque rupture mechanisms are still poorly understood.

In this thesis, a novel hypothesis regarding mechanisms of plaque rupture is
proposed. Specifically, we hypothesize that the adhesive strength of the bond between the
plague and the vascular wall is an important determinant of atherosclerotic plaque
stability (resistance to rupture). We also expect adhesive strength to be a function of
plague composition and extracellular matrix (ECM) organization at the plaque-media

interface. This proposed mode of rupture is called delamination or plaque peeling.



Mouse plaque peeling experiments were very challenging and they needed time to
be performed and validated. Thus, due to similarity of the experimental protocol, we used
experimental data obtained on the dissection of human coronary artery specimens by
Ying Wang?, and we created a numerical model to apply the cohesive zone technique to
this problem. Arterial dissection is a rare but potentially fatal condition in which blood
passes through the inner lining and between the layers of the arterial wall. It results in
separation of the different layers, creating a false lumen in the process. The advantages to
performing a primary study on arterial dissection were first to apply the cohesive zone

models to a less complex problem than atherosclerosis.

The innovative technical approach to measure the adhesive strength developed
previously*®, will be applied in this thesis to mice. It includes a micro-scale peel
experiment protocol to measure adhesive strength of mouse atherosclerotic plaques
during delamination from the underlying vessel wall. Our team at USC, as far as we
know, was the first to perform these types of measurements on mice. The use of mice in
our experiments presents the advantage that the extracellular matrix composition could be
systematically changed using transgenic strains, altered diet, or drug treatments. Different
mouse strains or models could then be used and the mechanical properties will be studied

on each type.

Another innovation of our work will involve application of a cohesive zone
model to describe delamination behavior of atherosclerotic plaques under a range of
physiological and pathophysiological conditions, using a 2D numerical model. While the
cohesive zone approach has been widely used to model fracture mechanics in classic

engineering materials, it was rarely applied to describe failure of atherosclerotic plaques.

Vi



The study of plaque delamination by Leng et al. 2015° was designed to test the use of
cohesive zones by implementing a specific traction separation law, assuming the
parameter values of the behavior laws of the plaque and the cohesive zone using values
from the literature. Innovation in our approach is to use a simple traction separation law
to study the behavior of plaques and identifying their properties. Experimental results of
delamination of the plaques were used in the definition of traction-separation laws of the

cohesive zone.

KEYWORDS: Cardiovascular Diseases — Arterial Dissection — Atherosclerotic
Plaque — Delamination Mode — Fracture Mechanics — Cohesive Zone Model — Inverse
Method ...

vii
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CHAPTER 1 INTRODUCTION AND STATE OF ART

Section 1 — Biological introduction
- Anatomy of healthy arteries

Each individual has his own arterial tree. The shapes, lengths or even the positions
of the various arteries and veins are very variable from one person to another. This
particularity is due to the growth and history of each person, which leads to important
anatomical differences. Nevertheless, the arteries all have a common structure: the

arterial walls are composed of three concentric layers®, as represented in Figure 1.1:

- The intima (inner coat) consists of endothelial cells. Endothelial cells are flat
cells which interleave into each other forming a smooth surface limiting friction with the
blood. They are fixed on a basal lamina, assembled of proteins and extra-cellular
glycoproteins, delivering nutrients and removing wastes from the endothelial layer.
Endothelial cells themselves are surrounded by connective tissue (cells separated by an

extracellular matrix) called the sub-endothelial layer’.

- The media (tunica media) consists of smooth muscle cells embedded in an

extracellular matrix composed of collagen and elastin fibers.



- The adventitia (tunica adventitia) is mainly composed of collagen, but also

elastin, fat cells and blood vessels.

ARTERY VEIN

Tunica
Adventitia

Tunica Intima Tunica Intima

CAPILLARY Single layer of
Endothalial Cell

Nucleus of
Endothalial Cell

Figure 1.1: A cross section of a normal vessel showing the different layers in human
arteries, veins and capillaries (http://www.vascularconcepts.com)

Smooth muscle cells, elastic and collagen fibers are considered the main structural

components of the different layers of the artery; each component has its own properties.

Elastic fibers (mostly elastin) have a diameter on the order of microns. They are
present in the form of a network®. Elastic fibers can withstand very large deformations

(2000%)°.

Collagen fibers provide most of the strength of the artery®.

Smooth muscle cells allow the modification of the geometry of the arteries.




The morphology and the proportion of each of the three layers can vary
depending on the function and location of the artery. Thus there are three different kinds

of arteries:

- The elastic arteries, which have the largest diameter and whose media
contains a high proportion of elastin. They deform easily under the action
of the blood™. This group contains the most well-known arteries such as
the aorta, pulmonary artery, or carotid arteries.

- Muscular arteries, which contain more medial smooth muscle cells and less
elastin than the elastic arteries*2.

- Atherosclerotic plaque formation

Atherosclerosis is a chronic inflammatory disease of the large elastic arteries
characterized by a progressive accumulation of lipids, calcium, and other elements within
the intima, leading to the formation of a plaque with complex structure as represented in
Figure 1.2. Risk factors such as excessive consumption of tobacco, fatty food causing
excessive cholesterol in the blood, stress, genetic predisposition, diabetes, and lack of
exercise contribute to its development, eventually leading to symptoms that can have

serious consequences>.

Atherosclerosis is a disease mainly affecting the elderly, developing over several
decades. Given the aging population and dietary habits in developed countries, several
authors have suggested that this disease is the disease of the 21st century™**>*®. This is a
complex disease in which the initiation and evolution are still not fully understood *'.
Low density lipoproteins (LDL) are absorbed directly through the endothelial layer of the

intima. The intima layer thickens around the lipid core (atheroma) and the fibrous tissue



resulting as a consequence of the inflammation. The thickened intima with its lipid core

and surrounding fibrous tissue is called an atherosclerotic plaque.

Microvessels

Macrophage

Collagen

potty Calcification

Ny ) I —— .
\‘-\ ’ ﬁ Endothelial cell
o |
H
Artery Atherosclerotic Cells &
plaque structures

Figure 1.2: Atherosclerotic plaque composition

Arterial remodeling takes place, and the final result is a compact layer
containing primarily collagen and smooth muscle cells, with some contribution of
additional matrix proteins. The lipid core does not contain only lipid. It is also a complex
tissue containing many constituents, including lipoproteins, triglycerides, foam cells,
leukocytes and macrophages'®... The formation of calcifications may occur during
plague growth. Calcification of plaques can be caused by either genetic factors or by
smooth muscle cells and macrophages that have become calcified after undergoing
apoptosis while crossing the fibrous cap in their migration into or out of the necrotic lipid
core. The calcifications could then be found in both atherosclerotic plaque cap and lipid

core®®,



I1l1-  Role of collagen in extracellular matrix

Collagen is an important component of the extracellular matrix of the arterial
wall. Studies have shown that the amount and organization of matrix collagen is related
to the mechanical stability of the fibrous cap®®. Collagen is the most abundant fibrous
protein and satisfies a variety of mechanical functions, particularly in mammals. It is
present in skin, cartilage, arteries and in most of the extracellular matrix in general?.
There are at least 28 genetically distinct types of collagen®*?. They can be grouped into a
number of subfamilies (Table 1.1). From the biomechanical point of view, the fibrillar
collagens are of most interest?*®. The fibrillar collagens are defined as a family of
structurally related collagens that form the characteristic collagen fibril bundles seen
in connective tissue. Fibrillar collagen is a critical component of atherosclerotic lesions.
Uncontrolled collagen accumulation leads to arterial stenosis, while excessive collagen

failure combined with inadequate synthesis weakens plaques, making them prone to

rupture %.

Human atherosclerotic plaques contain mostly fibrillar collagen types I and il
2" Type I collagen itself comprises approximately two-thirds of the total collagen®. Type
V collagen also increases in advanced atherosclerotic plaques®. Thick type IV collagen
depositions are frequently seen in the fibrous cap regions 2%, Type VIII collagen is
considered a short-chain collagen (subgroup of non-fibrillar collagens). It may serve
different functions such as stabilization of membranes, and interactions with other
extracellular matrix molecules. It is found in basement membranes where it plays a role

as a molecular bridge between different types of matrix molecules®, including in ECM



of atherosclerotic plaques. Lopes et al. 2013 showed that Type VIII collagen mediates

fibrous cap formation in atherosclerosis=.

Table 1.1: Collagens and collagen-like proteins in vertebrates

Sub-family Members

Fibrillar collagens Types L 1L 111, V, X1, XXIV and XXVII
Fibril associated and related collagens Types IX, XII, XIV, XVL, XIX, XX, XXI
and XXII
Beaded filament forming collagen Type V1
Basement membrane and associated Type IV, VIL. XV and XVIIL
collagens
Short chain collagens and related proteins Types VIII and X; Clq: hibernation-related

proteins HP-20, HP-25 and HP-27; emilins 1
and 2; adiponectin; CTRPs 1-7: inner ear
(saccular) collagen

Transmembrane collagens and Types XIIL, XVII, XXIII and XXV/CLAC-P;
collagen-like proteins ectodysplasins; macrophage scavenger
receptors I-IIT; MARCO; SRCL; gliomedin;
CL-P1
Collectins and ficolins Mannan binding protein; surfactant proteins A

and D; conglutinin; CL-43; CL-46; CL-L1;
CL-P1; L-, M- and H-ficolins

Other collagens and collagen-like proteins Emul; collagen XXVI/Emu2; collagen
XXV acetylcholinesterase tail subunit

IV-  Conclusion

Studying plaque stability is challenging. Therefore, it is important to understand
plaque formation and composition from a biological point of view. But plaque rupture is
a mechanical process that needs to be also studied as a mechanical problem. In the next
section, some important mechanical concepts will be presented in order to use them later

to have a better understanding of plaque rupture mechanisms.

Section 2 — Mechanical introduction

I- History and Griffith theory

From a mechanical point of view, our medical problem will be solved using
fracture mechanics laws. In this part we will introduce as simply as we can fracture

mechanics in general.



In 1920, A.A. Griffith started his work on fracture mechanics considering that
the theoretical strength of a material was taken to be E/10, where E is the Young's
Modulus for the particular material. He was only considering elastic, brittle materials, in
which there is no plastic deformation. A lot of experimental tests were done since then to
study the critical strength, and it was observed that these critical strength values (strength
before failure) were 1000 times less than the predicted values. Griffith wished to
investigate this disagreement. He discovered that there were many microscopic cracks in
every material and hypothesized that these small cracks actually are responsible for this
difference. The presence of these cracks lowered the overall strength of the material

because of the increased stress concentration when a load is applied.

Griffith used the energy approach to deduce the energy release rate G, using the
first law of thermodynamics. This law implies that during the passage from a non-
equilibrium state to an equilibrium state, there is a net decrease in energy. Based on this
idea, Griffith explained the formation of a crack. A crack can form or extend only if a
process does not increase the total energy. Thus the critical conditions for fracture can be
defined as the point where crack growth occurs under equilibrium conditions, with no net

change in total energy.

The Griffith energy balance for an incremental increase in the crack area under

equilibrium conditions can be expressed by: (Eqg. 1.1)

dE _ dSE N dWs
dA  dA dA

(1.1)



Where:
E: total energy.
SE: potential energy supplied by the internal strain energy and external forces.
Ws: work required to create new surfaces.

The energy release rate G is defined as a measure of the energy available for an

increment of crack extension (Eq.1.2)

dE  dSE

C= 34" 44
(1.2)

So G measurements can define a fracture parameter, which is the energy release
rate during the dissection phase; the challenging part is to measure experimentally the G

values.

- Cohesive models

Delamination is defined as the act of splitting or separating a laminate into layers.
Delamination along an interface plays a major role in limiting the toughness and ductility
of multi-phase materials. This motivated considerable research on the separation of
interfaces using finite element models. Delamination of the interface can be modeled by
traditional methods such as nodal release techniques. On the other hand, it is possible to
use other techniques that simulate failure by adopting relations between tractions and
separations, and introducing a critical fracture energy representing the energy required to

separate the interface between surfaces. This technique is called the simulation by



cohesive zone model (CZM). The definition of traction-separation laws used depends on
the choice of elements and the surrounding material behavior. Generally, the traction-
separation law T = f(3), cannot be identified directly. Most of the traction-separation laws
used in the literature contain at least two parameters: the cohesive strength T, and the
critical separation & *. It has been shown that the shape of the law has an effect on crack
propagation even if the same T and &; are used®*. A bilinear traction-separation cohesive
law is considered here. Figure 1.3 depicts this law. It shows linear elastic loading (OA),
followed by linear softening (AB). The normal maximum contact traction is reached at
point A and denoted as T,. Separation starts at point A and ends at point B when the
normal contact traction reaches zero. The area under the OAB curve is the energy
released due to complete separation, which is termed the critical fracture energy per unit
area. It is assumed that separation is cumulative and that any unloading/reloading cycle

induces a purely elastic response along line OC.

A
1] I—
m
x n
~ 0
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= ®
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= E
= —
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S (ar€a under entire curve)
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]
0 s :
O "o 0 3,

Separation, &

Figure 1.3: Traction/separation schematic curve for bilinear cohesive zone models



The parameters of the bilinear traction/separation cohesive law to be

characterized are: Keg(MPa/mm), To(N/mm) and 8f (mm).

I11-  Mechanical properties of arterial and atherosclerotic plaque

components

Smooth muscle cells, elastin and collagen fibers are considered as the main

structural components of the different layers of the artery.

Elastin fibers have a linear elastic behavior with a Young's modulus on the order
of 1 MPa®°. However, due to the presence of collagen fibers, the arteries have a strongly
nonlinear behavior with a rigidity that tends to increase with the applied mechanical load.

Three zones are generally considered on the stress-strain curve of an artery (Figure 1.4).

Smooth muscle cells play an important role in the mechanical response of the
tissue. The vessel tends to contract from a wall pressure threshold, and to relax from a

shear stress threshold applied to the arterial wall®.

The vast majority of studies on the mechanical behavior of arteries use a
hyperelastic model and define an elastic strain energy function, logarithmic, polynomial
or exponential”®. Burton®” showed that the intima makes a very small mechanical
contribution, which could be expected given the low thickness of this layer. The other
two layers are the media and the adventitia. Both provide the majority of resistance and

mechanical behavior.
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Figure 1.4: Stress Strain arterial response

In 1967, Sacks and Thickner measured different elastic moduli between the radial,
circumferential and axial directions on canine femoral arteries ***2 These studies
therefore suggest that the behavior of arteries is anisotropic. A system is called
anisotropic when the mechanical properties are dependent on the considered direction.
This property was confirmed two years later by Patel et al. who worked on the carotid
arteries of dogs and showed that the circumferential direction of the artery was generally
stiffer than the axial direction®. The mechanical behavior of arteries could be modeled by
three groups of mechanical properties, depending on the axial, radial, and circumferential
directions. One of the major characteristics of the vessels is the existence of
circumferential residual stresses. This phenomenon can be observed directly by cutting an
artery radially: the ring opens naturally as residual stresses are released. In vivo, it seems
that the stress level across the arterial wall is offset in large part by blood pressure”*. It is

known that the residual stresses are a result of growth and permanent remodeling of the
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artery. Saini et al.** showed that the elastin fibers are the main element responsible for
these residual stresses, although it has been proven that collagen fibers also play an

important role*.

Many studies have confirmed this observation of the existence of residual stresses in
the arterial wall****>"- Chuong and Fung*® suggested that it was possible to quantify the
residual stresses by measuring the opening angle of the artery once cut radially. The
problem is more complex in reality as it has been shown that opening angles are different

46,47

between the media and adventitia layers™"", and even between the external and internal

parts of the media*®. Many other authors have proposed computational strategies to

predict the stresses in arterial wall*.

IV-  Conclusion

To study plaque separation from a mechanical point of view, mechanical laws should
be used depending on the mechanical process. In layer separation problems, fracture
mechanics is the field of interest. In the case of experimental work, it is important to
understand the Griffith theory. And in numerical work, cohesive zone models can be
implemented to model the separation and to understand dissection properties. In the next
section, a state of the art literature review is presented to show how these mechanical
principles and laws have been applied to biological tissues to study arterial dissection or

atherosclerotic plaque rupture.
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Section 3 — State of art and literature review

I- Arterial dissection

Arterial dissection may lead to serious complications such as myocardial ischemia,

ischemic stroke and other fatal consequences®>!

. It begins with an intimal tear that
propagates into the vessel wall and leads to the creation of a false lumen®. Separation
could occur between the intima and the media, between the media and the adventitia, or

within layers (intima and media)®.

Many factors contribute to arterial dissection such as elastin fragmentation, loss of
smooth muscle cells, atherosclerosis, and hypertension®>*. 60% of coronary artery
dissection cases occur in the left anterior descending coronary, and coronary
atherosclerosis is one of the most frequent pathologies leading to coronary artery

dissection®.

In order to better understand the mechanical process of dissection, many studies
have been realized in which the dissection strength between different interfaces was
measured °***%° Wang et al. 2014, were interested in the LAD (Left Anterior
Descending) coronary artery, since no data had previously been reported in the literature®.
This study used peeling tests to characterize the adhesion strength for dissection within
medial and intimal layers. The peeling test was designed to measure the dissection
strength at different interfaces within the arterial wall in terms of local energy release
rate, G. This method gave gquantitative data that helped to provide a better understanding
of arterial dissection mechanisms. Histological studies were performed to complement
the mechanical tests by confirming the exact dissection locations and examining the

microstructural characteristics at the separated surface. The results showed that there is a
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statistically significant difference in dissection resistance between tearing events
occurring within the intima and within the media *.

- Plaque rupture mechanisms

A- Histological features of vulnerable plaques

Several studies have used specimens obtained at autopsy to study the stability of
atherosclerotic plaques®® These studies aimed to identify the histological features that
distinguish stable plaques from unstable (ruptured) ones. Histological features of ruptured

plaques include the following

A thin fibrous cap (on the order of 65 um thick);

A large lipid core (>40% of plaque volume);

Angiogenesis within the plague;

Decreased collagen content in the fibrous cap;

Increased inflammatory cell content;

Outward vascular remodeling.

The thin-cap fibroatheroma (TCFA) is widely considered to be the type of
plaque most likely to rupture. It is characterized by a fibrous cap < 65 um thick, which is
heavily infiltrated by macrophages. Typically, a TCFA has a large, lipid-rich necrotic
core, which contains numerous cholesterol esters, free cholesterol, phospholipids,
triglycerides and apoptotic macrophage foam cells, lying between the thin fibrous cap and
the media®"*°. Many studies used mouse atherosclerotic plaque models and showed that

their plaques are less susceptible to rupture than human plaques®®. Despite this, mouse

14



plaque models are widely used. A lot of similarities were noticed in advanced

60.61aven if more

atherosclerotic plagques in mouse models with advanced human plaques
recent studies had shown that mouse biomechanical properties of plaques and artery size

give less propensity to rupture comparing to humans®?.

B- Role of circumferential tensile stress in plaque rupture

While histological features remain qualitative data, measuring fibrous cap tensile
strength was the subject of many studies aiming to quantify plaque stability. These
studies were interested in calculating tensile stresses using 2D finite element models, in
combination with histology to estimate the vulnerable geometry in human atherosclerotic
plaques®®%3®* |t is also possible to separate individual layers from plaques and to identify
the mechanical properties of the layers (intima & fibrous cap)®®. The mechanical
properties of lipid pools were also estimated based on lipid composition in human
plaques®®. FE analysis of human atherosclerotic plagues has shown that the areas of
greatest circumferential tensile stress are generally located at the plague shoulder, defined
as the boundary between the fibrous cap and the adjacent normal wall. It is important to
note that these results are related to lesions which have a large necrotic core and a thin

fibrous cap>®5364,

This prediction corresponds to clinical observations concerning the
most frequent location of plaque ruptures. More observations suggest that additional
factors, both biological and mechanical, must be involved to have a better understanding
of plaque rupture. For example, it has been found in some numerical studies calculating
the maximum circumferential tensile stresses in human plaques that the values were

usually different than the failure strengths measured experimentally. Static 2-D finite

element analysis underestimated by at least a factor of two the experimentally measured
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ultimate tensile stresses of tissue strips, suggesting that stresses experienced in vivo

would not reach the levels required for plaque rupture®®®

. More recent work by
Holzapfel and colleagues has shown that there is significant anisotropy in the mechanical
properties of the fibrous cap, with lower ultimate tensile stresses measured in the
circumferential direction than in the axial direction®. The measure of the shear strain
elasticity (SSE) was also used as an indicator to identify vulnerable plaques®, if the
absolute value of the SSE is high, the plaque is more vulnerable. The same group has
developed an intravascular ultrasound elasticity reconstruction method to have a predictor
of plaque vulnerability®®, and designed a technique to get strain fields and modulograms
for the recorded intravascular ultrasound sequences, in order to have quantitative data

taking into account the motion of the heart and therefore better predictions of plaques

vulnerability™.

In conclusion, these observations suggest that additional factors, both biological

and mechanical, must be considered in plaque rupture studies.

C- Fatigue and fracture mechanics

Many other factors than those listed above could play a major role in plaque
stability, such as calcification in the fibrous cap or the lipid core*®™. Using finite element
analysis, Weinbaum and colleagues have recently shown that microscopic calcifications
in the fibrous cap could lead to local stress concentrations which might exceed the
mechanical strength of the material'®. Material fatigue may play a significant role in
plaque rupture, but this factor has received limited attention’,’2. Atherosclerotic plaques
are subject to cyclical pressure loading as a function of the normal cardiac cycle in vivo.

Plaques in certain locations, such as the coronary arteries, also may experience cyclic
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tensile loading due to changes in the geometry of the heart as it contracts and relaxes.
Clinical observations have shown an increased risk of acute cardiovascular events with
increases in pulse pressure, consistent with the idea that material fatigue contributes to

plaque instability”.

From a fracture mechanics point of view, few studies have attempted to
characterize plaque rupture properties. Holzapfel’s group has measured forces required to
delaminate the normal human aortic media®’. Recently, Pasta and colleagues® have also
measured fracture properties of human aortic media in order to better understand
aneurysm rupture mechanisms. Several studies carried out by the Gasser group used the
cohesive elements technique in numerical models to represent the propagation of arterial
dissection’®. The cohesive zone model (CZM) captures the dissection properties of the
individual arterial tissues. Gasser assumed the existence of a cohesive zone in which
initialization and coalescence of micro-cracks are lumped into a discrete surface, based

on the elasto-plastic fracture theory of metals’™ "

, and on the quasi-brittle fracture theory
of concrete™. In his study of plaque dissection during balloon angioplasty, Gasser defined
the dissection as a gradual process in which cohesive traction resists separation between
adjoining material surfaces. The presence of collagen in arterial layers motivated the use
of this cohesive concept. These studies used a novel cohesive zone model with a defined
traction separation law in their finite-element simulation to predict that, in the primary
phase of material failure, the plaque breaks at both shoulders of the fibrous cap, with
initial crack growth being stopped at the internal elastic lamina. In the secondary phase,

local dissections between the intima and the media develop at the fibrous cap location

with the smallest thickness’’. However, the pressures acting on the fibrous cap are much
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greater during balloon angioplasty than under normal physiological conditions™.
Importantly, plaque failure by delamination has been observed clinically during stenting
of atherosclerotic human arteries; although the conditions contributing to delamination

during this intervention are also well outside the physiological range.

A survey of the literature on plaque rupture reveals that little attention has been
directed toward measuring or modeling plaque attachment to the vessel wall as an
adhesive interaction. If successful, our proposed studies will provide evidence for an
alternative mechanism of plaque rupture, which does not depend solely on mechanical
strength of the fibrous cap. In addition, our computational studies will investigate a range
of conditions (material properties, physiological parameters such as blood pressure) that
contribute to each mechanism of plaque failure. Understanding the multiple mechanisms
of plaque rupture will potentially lead to development of new strategies for clinical

intervention to reduce the incidence of this potentially lethal event.

I1l-  Conclusion

Previous biomechanical studies of plaque rupture have focused primarily on the
tensile strength of the fibrous cap, rather than on the adhesive strength of the cap/wall
interface. We propose in this thesis a novel hypothesis regarding mechanisms of plaque
rupture. Specifically, we hypothesize that the adhesive strength of the bond between the
plague and the vascular wall is an important determinant of atherosclerotic plaque
stability (resistance to rupture). In the following section, we review the studies which
have already been published about adhesive strength evaluation and modelling in

biomechanics.
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Section 4 — Fracture mechanics in soft tissue biomechanics

I- Experiments

Studies dealing with atherosclerotic plaque delamination as a fracture mechanics
problem are rare. The Lessner group at the University of South Carolina used fracture
mechanics to study coronary arterial dissection and atherosclerotic plaque rupture®*. In
these studies, a method was developed and applied to characterize the fracture energy per
unit area. In other words, the aim was to characterize the dissection strength at different
interfaces within the arterial wall in terms of local energy release rate. Taking a different
approach to explore dissection properties, Chu et al. 2013 measured the fracture
toughness’® which is an inherent property describing the ability of a material to resist

crack propagation from an existing flaw®°.

Some studies took into account the effects of fatigue on the aortic wall. It is
important to include fatigue effects, especially in the study of spontaneous rupture of the
aorta (SRA), since the aorta is subjected to cardiac pressure cycles. Chu et al. 2013 ™
hypothesized that fracture toughness as well as the stiffness of a piece of ascending aortic
tissue are separately governed by the amount of cumulative damage present internally, in

a purely fatigue-driven environment’®.

Other studies focused on measurement of the energy required to produce the
dissection. Table 1.2 summarizes some of the values of the dissection energy

characterized on different samples.
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Table 1.2: Dissection energy calculated experimentally for different arterial samples in

literature
Reference Samples Dissection Energy (J/m2)
Carson et al. 1990 * Thoracic aorta 159.0+8.9
Roach & Song 1994% Upper abdominal aorta 18.8 +8.9
Roach & Song 1994% Lower abdominal aorta 113.4 + 4.05
Sommer, et al, 2008 Human abdominal aortic media ~ 76+27 (axial)

51+6 (circumferential)

Tong, et al, 2011%° Human carotid artery 60+16~75+24 (within media)
Wang et al. 2014° Human LAD coronary artery 20.71+16.47 (within intima)

13.46£7.19 (intima-media
interface)

10.31£4.95 (within media)

In summary, we can see that the dissection energy has been characterized for different
samples and under different conditions (pathological and healthy cases, for instance). The
dissection energy was the major factor measured, since it can be deduced directly from
load displacement curves obtained experimentally.

However, refined analyses of the characterized dissection energy are still missing. For
example, the contribution of the strain energy to the total energy was never considered.
Numerical simulations would offer an interesting possibility to investigate this
contribution and its effects, but this has never been done.

- Numerical studies

Several studies carried out by the Gasser group used the cohesive elements

technique to represent the propagation of arterial dissection’®. The cohesive material
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model aims at capturing the dissection properties of the individual arterial tissue. The
presensce of collagen fibers in arterial layers motivated Gasser to use cohesive zone
model to study the separation between biological layers’. Thus, damage of fiber bridging
was considered to be the cause of a gradual decrease of cohesive force after exceeding the
limit load.

Gasser et al. 2006 focused on the dissection of the human aortic media in mode |
separation. The human aortic media has a highly organized lamellar structure with
repeating structural and functional units of elastin, collagen and smooth muscle cells.
Based on this lamellar structure, he postulated a cohesive potential per unit area and
derived an appropriate traction separation law using the theory of invariants. This law is

shown in Figure 1.5. It is composed of two parts; the linear elastic part has stiffness C,,:

(Eq. 1.3)
tn
Cp = 5
(1.3)
And the softening part is defined by the traction separation law (Eq.1.4)
t, = toexp(—ad?l)
(1.4)

Where tn is the elastic traction limit of the cohesive zone related to én. t, denotes
the cohesive tensile strength and, the non-negative parameters a and b aim to capture the

softening response of the tissue according to mode I dissection.
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Figure 1.5: Elastic and damage loading stages of the cohesive model: state of damage on,
elastic stiffness cn and elastic traction limit tn at 8n defined by Gasser et al. 2006

The experimental evidence of crack propagation shows that the cohesive
behavior is different for opening mode (I) and sliding modes (Il and 111), even in isotropic
materials®. It is therefore necessary to follow the direction of the crack to distinguish the
contribution of the normal and tangential components of the separation (displacement
jump). An anisotropic cohesive law, able to distinguish the behavior of the cohesive
response along the different directions of the cohesive surface, and an anisotropic fracture
criterion were used in this study®. The cohesive law used is shown in the Figure 1.6,

defining three critical fracture energy values, one for each direction.

Figure 1.6: Set of cohesive laws considered in the model used in Ferrara et al. 2010
study®* . Both cohesive strengths and critical energy release rates are scaling
proportionally. The maximum opening displacement §c¢ does not change
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In any cohesive law used, characterizing the cohesive parameters is challenging. In
Gasser and Holzapfel’s study®, three parameters had to be determined to characterize the
cohesive law : tp, @ and b. In order to quantify to, experiments carried out by the same
group were used™". Tensile tests were carried out on circular-shaped specimens along the
radial direction and the force displacement curves were measured. According to these
experimental data, tn was found equal to 140.1 kPa. The value of parameter «b »
(equation 2) used in Gasser’s simulations was estimated by assuming that the material is
« plastic-like » with b=2. This value ensures convergence by avoiding a fast decay of the
cohesive traction when reaching the cohesive strength, which is typical for quasi-brittle
materials. « a » (equation 2) was deduced using an inverse method. The method consisted
of varying «a » until a force vs displacement curve matching the experimental curves
was obtained. « a » was found to be equal to 6.5mm™1. Computing the critical fracture
energy using these parameters gave a value of 4.9 mJ/cm?. According to the values
presented in table 1, the value 49 J/m? falls within the range of experimentally obtained

values. Ferrara et al. &

used a simpler cohesive law, and the parameter to be determined
was only Gc (critical fracture energy, which can be deduced directly from the

experiments).

An important point to notice in the listed numerical studies was the integration scheme
used for simulations. Table 1.3 shows numerical studies using CZM that deal with
medical problems in which separation between layers occurs. For each listed study, an

inventory of the resolution scheme and the cohesive law used for the model was cited.
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Table 1.3: Numerical studies and the resolution scheme chosen for the models

Study Domain of Implicit or Cohesive Law
application explicit

Gasser et al. 2003%° | Dissection in soft Explicit user defined: transversely
biological tissues isotropic traction

law in form of a
displacement—energy
function and assuming
that softening phenomena
in the cohesive zone are
modeled by a damage
law, which depends on
the maximum gap
displacement of the
deformation path.

Gasser et al. 2006> | Modeling the Explicit user defined: Linear
propagation of elastic part, exponential
arterial dissection softening part represented

in Figure 1.5

Gasser et al. 2007"" | Plaque fissuring Explicit User defined
during balloon
angioplasty

Ferrara et al. | Fracture in human Explicit Bilinear traction
arteries separation law

2008% represented in Figure 1.6

Ferrara et al. | Arterial media Explicit
dissection

2010%

Caballero et al. | Kidney stones Explicit bilinear traction
fragmentation by separation law

2010% direct
impact

Badel et al. 2014 * | Arterial dissection Implicit Linear elastic part,
during balloon exponential softening part
angioplasty of (Abaqus/stand
atherosclerotic
coronary arteries ard)

Untaroiu et al. | Biomechanical and Explicit Normalized trapezoidal

injury response of
human liver

traction-separation
relationship
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2015% parenchyma under
tensile loading

Leng et al. 2015 Atherosclerotic Implicit User defined
plaque delamination
in ApoE knockout
mouse models

Most numerical work studying dissection or separation problems in biological
tissues used the cohesive element technique as represented in Table 1.3, with differences
in the choice of cohesive law and its parameters, and the choice of the integration
scheme. A bilinear traction separation law was used and accepted in some of these works,
and the explicit scheme seemed to be the most frequent choice in CZM, since there is the

presence of large deformations and high non-linearity.

I11-  Conclusion

The objective of our research is to have a better understanding of two medical
problems: arterial dissection and atherosclerotic plaque delamination, using fracture
mechanics laws. A review of the literature showed that delamination has always been
under-considered by cardiovascular biomechanicists both experimentally and
numerically.

In order to address this lack, experimental and computational work has been achieved in
this thesis. The aim of the experimental work is to measure the interlaminar tissue
adhesion strength first in human coronary artery specimens and then in a mouse model of
atherosclerotic plaques. The aim of the computational work is to identify meaningful
constitutive parameters from these delamination tests, as adhesive strength is expected to

depend on plaque composition and extracellular matrix organization. The choice of
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integration scheme in simulations was an important factor to ensure convergence and to
respond to the high non-linearity related to this problem.

The manuscript is organized as follows: after this introduction, Chapter 2 presents the
numerical method used to identify mechanical properties of arterial layers based on the
experimental data obtained by Wang et al. 2014°. This chapter also presents a novel use
of an inverse method to characterize cohesive parameters of the interface between the
layers. In Chapter 3, atherosclerotic plaque delamination will be studied. In Chapter 3, the
experimental protocol to identify the energy release rate in two mouse genotypes is
presented. These two groups of mice are the ApoE ”~ vs ApoE " Col 87 . The aim is to
verify whether or not the absence of Col8 in atherosclerotic plaque would be a factor
affecting its stability. In chapter 4, based on the numerical method developed in chapter
2, a finite element model of atherosclerotic plaque is presented, to study the delamination
using an explicit scheme and the cohesive zone model.

The whole work is summarized in the flowchart of Figure 1.7.
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Figure 1.7: Chart representing the work plan for the next chapters

27




CHAPTER 2 ARTERIAL DISSECTION: IDENTIFICATION OF
MECHANICAL AND DISSECTION PROPERTIES IN HUMAN
CORONARY ARTERIES USING AN INVERSE METHOD

Abstract

The cohesive zone model has been widely used in finite element models to study
separation between layers for medical problems. In this study, a 2D finite element model
was developed using an implicit scheme and a cohesive zone model (CZM) to test an
approach that could help identifying material and cohesive parameters using
experimental data. The approach consisted of identifying unknown parameters of the
model using an inverse method that related the force-displacement curves obtained
experimentally. The method was applied to an arterial dissection problem to have a
better understanding of the factors playing a crucial role in the dissection mechanisms.
Simulation results showed good agreement between experimental and numerical curves
when the correct parameters were identified. However there were some limitations due to
the use of the implicit scheme, especially for high energy release rate values. No
significant differences in identified cohesive parameters were found between dissection
through media and dissection through intima cases. Mechanical properties were different
between adventitia layers, and intima-media layers which corresponded to reported

values
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in the literature. Finally, this approach could be used to identify material and cohesive
parameters, but the use of an explicit scheme would be more suitable for more complex

problems.

Keywords: Cohesive zone model, arterial dissection, mechanical properties,

inverse method, arterial layers

Section 1 — Introduction

Arterial dissection is a rare but potentially fatal condition in which blood passes
through the inner lining and between the layers of the arterial wall. It results in separation
of the different layers, creating a false lumen in the process. Arterial walls are composed
of three layers, called intima, media and adventitia. Separation could occur between the
intima and the media, between the media and the adventitia, or within the intima or
media. Coronary arteries are among the arteries most prone to atherosclerotic diseases %,
which is one of the most common pathologies associated with coronary artery dissection
>*_ The left anterior descending coronary artery accounts for 60% of the cases of coronary
artery dissection . The different constituents composing arterial layers make the arterial
wall a heterogeneous anisotropic tissue. Like most soft tissues, it displays a highly
nonlinear behavior, stiffening progressively with increasing applied loads. A study
carried out by Eberth et al. 2011°* was based on the assumption that the arteries are
scalable to different changes (pressure, layer thickness, lumen diameter, length...) and in
order to estimate the specific implications of these changes, the study used a 4-fiber
family constitutive model to quantify the biaxial passive mechanical behavior of mouse

carotid arteries.
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Gasser and Ogden 2003 % explained in detail the mechanical behavior of arterial layers
and elaborated a constitutive model, denoted Gasser-Holzapfel-Ogden model (GHO
model), taking into account the different orientations of fibers constituting the arterial
wall layers % . Holzapfel et al. explained that biological soft tissues, more precisely the
arteries, present preferred directions in their microstructure®’. When these materials are
subjected to small strains (less than 2-5 %), their mechanical behavior can usually be
adequately modeled using conventional laws of linear anisotropic elasticity®. However,
under finite deformations, these materials have an anisotropic and nonlinear elastic
behavior due to rearrangements in the microstructure, such as reorientation of fibers with
the directions of deformation. The simulation of these non-linear effects in finite
deformation calls for more advanced constitutive models formulated within the
framework of anisotropic hyperelasticity. Hyperelastic materials are described in terms of
a strain energy function, which defines the energy stored in an elastic material per unit
volume of reference (volume in the initial configuration) in terms of deformation at a
given point in the material %%%,

From a biomechanics point of view, the process of dissection can be thought of
as a delamination process, and it is defined as separation along the interface.
Delamination plays a major role in limiting the toughness and ductility of multi-phase
materials, making this particular problem a medical and a mechanical problem that needs
to be studied. This has motivated considerable research on the separation of interfaces .
Several studies performed by Gasser’s group used the cohesive elements technique to
represent the propagation of arterial dissection ®. The cohesive material zone model aims

at capturing the dissection properties of individual arterial tissues. Gasser assumed the
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existence of a cohesive zone in which initialization and coalescence of micro-cracks are
lumped into a discrete surface, based on the elasto-plastic fracture theory of metals’",
and on the quasi-brittle fracture theory of concrete *. In his study, Gasser defined the
dissection as a gradual process in which separation between surrounding material

surfaces is resisted by cohesive traction. The presence of collagen in arterial layers

motivated the use of this cohesive concept.

However, there is still a lack of information concerning the mechanical process
of dissection, and the factors and parameters that should be taken into account to have a
better understanding of the process. The main aim of this chapter is exploring dissection
properties for arteries, by creating a 2D model simulating dissection and using the
cohesive element technique. An inverse method will be implemented, consisting in
calibrating a 2D model able to simulate the dissection through different arterial layers in
order to identify the constitutive and dissection properties of human LAD coronary
arteries tested by Wang et al. 2014, This identification would help in understanding the

factors that play a crucial role in the dissection mechanism.

Section 2 — Materials and Methods
I- Experiments

Experiments performed by Wang et al. 2014°® aimed at characterizing the
dissection strength at different interfaces within the arterial wall in terms of energy

release rate G (N/mm).

Human coronary artery specimens tested were mounted on a plate. The plate was

connected to the load cell of the Bose ELF 3200 for load data recording. A small

31



delamination (notch) at the proximal end of the specimen was created and gripped by a
pair of micro-clamps connected to the Bose ELF 3200 actuator (Figure 2.1). The actuator
was controlled using computer commands, allowing loading and unloading cycles to be

applied to the upper tongue with a horizontal displacement condition.

Computer Vision System

Microclamps Actuator

Load

—_—

LAD

Load Cell

Side and longitudinally sectional view :p]ate

Figure 2.1: Schematic of the delamination process (longitudinal view)

Each loading-unloading cycle generated newly exposed area. Images were taken before
and after a peeling cycle to obtain the corresponding newly exposed area AA.

Figure 2.2 shows the first recorded load-displacement cycles during the
delamination event for one of the cycles on one sample. The area enclosed by the loading
and unloading curves is the fracture energy AE from the current peeling cycle (Figure
2.2). Using measured load-displacement curves, the fracture energy G was calculated
using Eq.2.1.

AE

T AA
(2.1)
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Figure 2.2: First cycles (Load vs Displacement) obtained for one sample (LAD4-R3)

The load displacement curves obtained experimentally were composed of 3 parts
representing a full loading-unloading cycle, composed of OA, AB and BO as represented
in Figure 2.2 for the sample LAD4-R3. OA represents the initial ramp corresponding to
the elastic energy associated with the deformation of the plaque prior to the separation
event. Using this first part, an inverse method will be applied to characterize the elastic
material properties in the Model 1 section. AB and BO represent the separation and the
unloading. The whole curve will be used in the Model 2 section where the cohesive
elements will be used to characterize the cohesive parameters and model the dissection.

- Numerical model: characterization of material parameters

A- Geometry and boundary conditions

A 2D model was used in this work. The length of all the specimens varied
between 14 and 24 mm. The effect of the variation in length between these 2 values was
negligible as proved in a preliminary numerical analysis for 4 lengths between 14 and 24

mm, so one model with the same length was used. The average value was 16 mm.

33



The width of the sample was measured using pictures taken during the

experiments for all the samples and the values are reported in Table 2.1.

Table 2.1: Width values for the different specimens used (mm)

Samples Width (mm)

LAD4-R3 5.6

LADG6 4

LAD10-S1 5

LAD11-S3 8
LAD17 8
LAD19-S2 6
LAD23 4

For each sample, the entire specimen was estimated to have an average thickness
of 0.45 mm. Figure 2.3 shows a histological picture of one of the samples tested with the

three layers adventitia, media and intima.

In order to simulate the initial flaw, a material separation was created at the left
edge between the dissected layers before beginning the peeling simulation, defining an
upper edge (where the displacement boundary conditions will be applied for the

simulations), and a lower edge.
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Figure 2.3: Histological picture showing the three layers media, intima and adventitia.
The average thickness was evaluated and reported in Table 2.2.

Table 2.2: Thickness of the three layers composing the sample

Thickness (mm)

Media 0.25

The lower edge and the right edge were clamped as shown in Figure 2.4. The

initial flaw shown in Figure 2.4 was created through the media; another model was also
created where the initial flaw was created within the intima to represent experimental

cases.
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Figure 2.4: Simplified representation of the 2D model used to simulate the dissection
through the media

In the finite element model, a master node was created to drive the slave nodes on
the upper left edge where the displacement control conditions were applied. The
simulations were run in 2 steps. In the first step, a vertical displacement was applied on
the master node to move the upper arm to a vertical position, allowing at the same time
free horizontal displacement and free rotation. Once the vertical position was reached, a
second step was applied consisting of a horizontal displacement in the dissection
direction; the vertical displacement was set equal to the value reached in step 1 and a free
rotation was still allowed. This step simulated the dissection phase where the data (force

displacement curves) were collected.

The geometry was meshed using plane strain quadrilateral elements. The
cohesive zone was meshed using only quadrilateral structured elements of cohesive type.
After trying different mesh sizes for the plaque and media (0.01, 0.025, 0.05 mm), it was
found that a mesh size set equal to 0.05 mm gives acceptable results within a reasonable
computational time (less than 2% error when compared with the 0.01mm mesh). The
mesh size for the plate underneath the plaque was larger since this zone was kept rigid in

this problem.
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Figure 2.5: Simulation of the peeling test at 4 different times throughout the test

B- Material model

A simplified neo-Hookean model was used in several studies®®®’

to represent the
response of the isotropic medium, in the absence of collagen fiber recruitment. The strain

energy function for a neo-Hookean model is represented by:Eq.2.2

Y= Cq(-3)+ Di Jer — 1)?
' 2.2)
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Where Cjo represents the neo-Hookean parameter characterizing the shear
modulus, I; represents the first deviatoric strain invariant, D; is the parameter related to
compressibility and Jg is elastic volume ratio. Then, the first part of the equation
represents the isotropic isochoric behavior and the second part represents the

compressibility behavior.

The Neo-Hookean model seems to be used and accepted for small strains, and

requires fewer parameters®®

. In addition, in cohesive zone problems, the elastic
properties of the wall are of secondary importance with respect to the cohesive properties
1% The Neo-Hookean law will be used in our approach to characterize the mechanical
properties of the different arterial layers corresponding to the dissection experiments

carried out by Wang et al. 2014 *,

The cohesive law used represents a bilinear traction separation cohesive law. It
shows linear elastic loading (OA), followed by linear softening (AB) (Figure 2.6). The
normal maximum contact traction is reached at point A defined as T,. The separation
starts at point A and ends at point B when the normal contact traction reaches zero. The
area under the OAB curve is the energy released due to complete separation and is called
the critical fracture energy. It is assumed that separation is cumulative and that any

unloading/reloading cycles induce a purely elastic response along line OC.

The parameters of the bilinear traction separation cohesive law to be
characterized are (Ke(MPa/mm), To(N/mm), &¢{(mm)). Knowing that To and &; are

related by Eq.2.3:
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G = (%) X Ty X &f
(2.3)

If G is given as an input, then characterizing both parameters Ty and K IS

sufficient.
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Figure 2.6: Traction/separation schematic curve for Bilinear Cohesive Zone models

C- Inverse method

Three main parts composed the loading unloading curves as shown in Figure 2.2.
The zero phase (before any load increase) showed important variations between all the
cycles. This variation was thought to be linked to the variation of the notch length created
before applying the test. So, the notch length in this case could not be considered the
same for all samples. The length ‘/” was then considered as a fourth parameter to be

identified in this study with the three Neo-Hookean parameters.

Mechanical properties of materials and cohesive parameters were determined

using an inverse analysis, with a Neo-Hookean hyperelastic material model. The three
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material properties to identify are Cyo adventitia, C1p media and Cyo intima (Cyo in MPa).
D1(adventitia)s D1(media)s D1(intima), Will be fixed to 1 MPa! according to the assumption of

incompressibility””’.

Figure 2.2 shows experimental force vs displacement curves obtained after one

cycle. These curves were used to validate the numerical model.

The identification of the six parameters (‘/’, C1 Of the three layers, Ty and K

for the cohesive zone) was performed in four steps:

Step 1: Characterizing the notch length for each model (first approximation)

As a first approximation for the notch length ‘I’, the three layers were considered
to have the same Cy, parameter which simplifies our identification problem to one
material parameter, and one geometrical parameter. The cohesive zone was also
considered to be a part of the material so having the same Cy,. ‘I’ and Cyp identified by
this approach were approximations to have starting values for the notch length. Then the
identified value of ‘I’ was considered as ‘linitiar” and Cyo Was considered as Cig(initial)- The
notch length ‘linitia” was varied between 0.1 and 3 mm with 0.1 increments. Different
models were generated with different notch lengths and an inverse method was applied
for each model generated with a different notch length to have a first approximation of
‘linitiar”. Since the cohesive zone was not considered in this first approach, only the zero-
phase and the loading part of the experimental curve were used in this identification (OA
in Figure 2.2). An inverse method was applied on each model using an optimization

algorithm (Isqnnldn). This consisted in finding the ‘linisia” that minimizes the deviation
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between the experimental and the numerical curves for the zero phase with the

corresponding Cio(initial)-

Step 2: Characterizing cohesive parameters & Ciq for the three layers

In this step, the ‘linitia” identified above was used. The three arterial layers were
considered identical and having the same mechanical behavior to reduce the number of
unknown parameters. The parameters to be identified were then reduced to three, one
material parameter (Cyo) and two cohesive parameters, To and Kes. The inverse method
consists in finding the material parameter and the cohesive parameters that minimize the
deviation between the experimental and the numerical force-displacement curves. An
initial matrix was defined containing all combinations of parameter values, Xinitiai= [Cio,
To Ketf]. The cost vector was defined by Eq. 2.4:

c0stector() = Foim() = Feap ()

(2.4)

Where Fsim represents the force values obtained by the simulations, Fexp
represents the interpolated experimental points, and j defines the index of the simulated

point. Then the cost function value was calculated as: (Eq.2.5)

_ [costyector ) x COStZ;ector(i)]
cost = 2

Fexp 2.5)

To avoid irrelevant solutions, bounds were defined for each parameter.
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C1o: values between 0.05 and 2 MPa

Kesi:  The initial stiffness of cohesive elements defined in terms of
traction/separation does not represent a physically measurable quantity and is treated as a
penalty parameter. The value of this penalty stiffness must be high enough to prevent
interpenetration of the crack faces and to prevent artificial compliance from being
introduced into the model by the cohesive elements. However, an overly high value can
lead to numerical problems'™. Therefore, the values were constrained within the range

[1-30 MPa/mm].

G values for the samples used in this identification were reported by Wang et al.
2014 2 for each cycle. Table 2.3 shows the different G values obtained for the studied

cycles and for the different samples.

Table 2.3: G values obtained for cycle 1 from different samples

Sample G (N.mm)
LAD4-R3 0.025
LADG6 0.014
LAD10-S1 0.014
LAD11-S3 0.0068
LAD17 0.0046
LAD19-S2 0.01
LAD23 0.024
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Knowing the G values, and choosing the bounds of s between 0.1 mm and 2 mm, Ty
values were automatically calculated. Only T, values were represented in the defined

matrix.

Figure 2.7 shows an example of the variation of the cost function values with respect

to the variation of the cohesive parameter (T,) and the elastic parameter (Cyp).

Variation of cost values

5
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Figure 2.7: Cost function values for LAD6 case with respect to the variation of TO
(cohesive) and C10 (elastic) parameters

Step 3: Separating individual layer properties (Cyq for the three layers)

After identifying the cohesive parameter and one global arterial property
corresponding to the minimum cost values obtained, an inverse method was applied using
an optimization algorithm (fminsearch) on the three layers (adventitia-media-intima),
with the same cohesive parameters obtained previously in order to identify the three

parameters Cyq related to each layer.
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Section 3 — Results

I- Notch length characterization

The notch length corresponding to the least deviation between numerical and

experimental curves for the zero phase before the deformation process is reported in

Table 2.4. The values represented in Table 6 are ‘linisia” obtained after applying step 1 in

the inverse approach described in Materials and Methods.

Table 2.4: Notch length corresponding to the minimum error between the numerical and
experimental points

Sample Notch Length (mm)
Dissection through intima

LAD4R3 1.2

LADG6 2.1

LAD10-S1 0.8

LAD11S3 0.8
Dissection through media

LAD17 11

LAD19 1

LAD23 2.9

These notch length values were then used in the model, and the inverse method was

applied to characterize the 3 material parameters (as described in Materials and Methods).
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- Material parameters

The inverse method was then applied to identify the cohesive parameters and Cio
values. Experimental vs numerical curves are shown in Figure 2.8 for dissection through
intima, and in Figure 2.9 for dissection through media. They were obtained with the

minimum error found for the seven samples.
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Figure 2.8: Experimental versus simulation curves obtained with the minimum cost value,
for samples dissected through the intima
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Figure 2.9: Experimental versus simulation curves obtained with the minimum cost value,
for samples dissected through the media

A- Arterial layer properties

Figure 2.10 represents a histogram of values for 6 samples tested and Table 2.5
lists all the values corresponding to each sample. The values of Ciy apy Were bound
between 0.03 and 0.2, the values of Cio mep between 0.1 and 0.6 and the values of Cig Nt

between 0.3 and 1.3.
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Cu values for different samples
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Figure 2.10: Characterization of C10 for the three layers of different samples (Histogram
format)

Table 2.5 lists these results.

Table 2.5: C10 values for different samples (table format)
Cuo [MP&]

LADA4R3 0.2 0.6 1.3

LAD10-B1 0.55 0.63 0.82

LAD17 0.17 0.13 0.7

LAD23 0.09 0.21 0.30
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As shown in Table 2.5, Cyo values identified were higher for the intimal layer
than for media and adventitia. Figure 2.11 shows the average values and the standard

deviation represented by the error bars, for the three layers.

Average C10 Values

1,2

0,8

0,6 — M

0,2 -

ADV MED INT

Figure 2.11: Average C10 values for the three layers

B- Interface layer properties (cohesive parameters)

Table 2.6 and Table 2.7 show the cohesive parameters corresponding to the
curves represented in Figure 2.8 and Figure 2.9. Two groups were distinguished, one with

dissection through the media and one with dissection through the intima.

1- Dissection through Intima

Table 2.6: Cohesive parameters corresponding to the minimum error between numerical
and experimental curves in dissection through intima cases

Sample Keff (MPa) To 6f (mm)
LAD4-R3 5 0.05 1

LADG6 17.5 0.07 0.4
LAD10-S1 14.25 0.0224 1.1
LAD11-S3 1 0.02 0.5
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2- Dissection through Media

Table 2.7: Cohesive parameters corresponding to the minimum error between numerical
and experimental curves in dissection through media cases

Sample Keff To of
LAD17 5.75 0.02 0.4
LAD19 14 0.012 1.6
LAD23 19.2 0.096 0.5

The average values of the different cohesive parameters Ty, K,, and &f were
respectively 0.046 MPa, 9.43 MPa/mm and 0.75mm for the samples where the dissection
occurred through the intima layer, and 0.042MPa, 8.7MPa/mm and 0.8mm for samples

where dissection occurred through the media layer.

Section 4 — Discussion

Few studies reported the neo-Hookean parameter values independently of the fiber
contribution. In our study, the Neo-Hookean constitutive equation was sufficient to
reproduce the elastic part of the response. This elastic part was restricted to small strains
and did not involve much collagen fiber recruitment, justifying neglecting an exponential
term in the constitutive equations. In order to check if our values correspond to literature
values, the ratio R (Cyo layerl/ Cyo layer2) was calculated. This ratio, even if it is
calculated for non-coronary artery specimens, still gives an indicative idea. Table 2.8

shows Cjo values reported in some studies along with the R ratio.
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Table 2.8: R values reported from literature

Papers Samples used | Cyo Cuo Cio INT | R=
ADV MED [MPa]

Holzapfel et al. | Rabbit carotid | 0.003 0.03 - 10
2000'%? Artery
Holzapfel et al. | LAD 0.0027 |0.27 - 10
2002
Holzapfel et al. | Human Aorta | 0.08 0.165 0.2 2.02
2006**
Yosibash et al. | Human 0.005 0.01 - 2
2012% coronary

arteries

In order to check if the differences of the C,o values were significant between
each layer, since the data does not satisfy a normal distribution, a Mann-Whitney test was
applied to the Adventitia-Media data, Media-Intima data, and Adventitia-Intima data. The
Mann-Whitney test is the non-parametric statistical test equivalent of the unpaired t-test
using the rank order of data instead of the raw data. It is used when the data being
analyzed does not follow a normal distribution. The test showed that non-significant
differences were observed for Cyo values between Media and Intima but on the other

hand, the differences between Adventitia and Media-Intima were significant.

Table 2.9 shows the obtained R values.

R (Med-Adv) varies between 0.8 and 3.4, which is an indicator that the media is stiffer
than the adventitia. Table 9 shows the ratio R calculated for different studies in the
literature. For the studies listed, R varies between 2 and 10. This result is in agreement

with our results.
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Table 2.9: R values calculated for the samples studied
Ci0 [MPa]

C10MED/C,,ADV

3 parameters

LAD4R3

|
|

Few studies have reported the Cyo value for the intima of an artery. Arteries of
laboratory animals have generally two mechanically significant layers (media and
adventitia) *°*: however, in human aged arteries the intima is a third mechanically
significant layer of considerable thickness and mechanical strength . The ratio R(int-med)
in (Holzapfel G. A., 2006)® was 1.25, so the intimal layer is stiffer than the medial layer,
which is also the case in most of our results. It is important to note that pathological
changes of the intimal components (atherosclerosis) are associated with significant
alterations in the mechanical properties of arterial walls, differing significantly from
those of healthy arteries %1%, The samples tested and reported in this study were taken
from patients with ischemic cardiomyopathy which may also explain the thickening of

the intimal layer.

The values obtained were considered for the next work to perform the dissection

simulations using the cohesive elements.
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The variation in material properties among specimens could relate to differences
in arterial composition. For instance, smooth muscle cells are known to be molecularly
heterogeneous and may cause this heterogeneity in mechanical properties **". This would
explain the differences between the values for the different samples belonging to the

different coronary arteries tested.

Different numerical studies have already been published related to dissection
problems. They used different cohesive laws, so different parameters than the ones
identified in this study. Ty was always a reported value. Figure 2.10 shows the different

values obtained in these studies.

Table 2.10: Cohesive parameters used in different published numerical studies

Study Dissection part G[N/mm] | To [MPa]
studied
Ferrara 2010% Coronary arteries 0.049 [0.014-0.14]
Ferrara 2007% Aortic dissection 0.16 0.2 (medial)

0.7 & 0.2 (diseased

intima)
Gasser 2007 Human iliac artery | - 0.16
Badel 2014% Coronary arteries 0.02 0.01

The average T, value obtained by our identification for all samples was 0.046

MPa and it falls in the range of the values reported in Table 2.10.

52



A statistical study was done to gain a better understanding about the most
influential factor among the three cohesive factors on the differences of G values
obtained between dissection through media and dissection through intima. The results

showed that the most influential factors were K and &; parameters.

(Wang el al. 2014) studied the difference between tearing events occurring
within the intima and tearing events occurring within the media. They showed that the
difference in dissection properties between layers was statistically significant. They also
postulated that when the dissection starts by a tear through the intima, which has a higher

stiffness, it can have a more complicated path and possibly kink to the media.

In our study only one cycle for each sample was considered. A statistical test
was done to check for significant differences between the parameter values identified for
dissection through the media and for dissection through the intima. Applying the Mann-
Whitney test on the two groups of cohesive parameters (dissection through media and
dissection through intima), results showed non-significant differences between the 2
groups. But in our study, only the first cycle from each sample was considered. This
could explain the non-significant differences between the values. To prove this
hypothesis, a Mann-Whitney test was applied on the two groups of G values obtained by
(Wang et al. 2014) including the first cycle only. The test showed that the difference
between tearing events occurring within the intima and within the media is statistically
non-significant, which is not the case when all the cycles are considered. This indicates
that the difference of properties between the intima and the media may have an impact on

cohesive parameters only for larger cracks but not for the first cycle.
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Section 5— Conclusions & Future Work
Arterial dissection occurring through arterial layers is a rare but sometimes fatal
event that may occur in human coronary arteries. (Wang et al. 2014) explored dissection
properties by evaluating the energy release rate needed to create these dissections. Using
their force-displacement curves and energy release rates, we applied an inverse method to
characterize the mechanical properties of the different layers composing the arterial wall
(Adventitia, Media & Intima). For the dissection, a cohesive zone model was used. The

cohesive parameters were also identified with the inverse method.

The results obtained showed that the media and the intima have similar
mechanical properties. Significant differences were observed between the adventitia layer
and the media-intima layers. Our study was the first to report mechanical properties for

the intima for human coronary arteries.

Non-significant differences were observed for the three cohesive parameters for
samples with dissection occurring though the media vs. samples with dissection occurring
through the intima. This result could be explained by the fact that only the first cycles

were considered in this study.

For future work, a global study should be realized including several cycles to
check which parameter is the most influential factor on the differences between

dissection through the media and dissection through the intima.
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CHAPTER 3 ATHEROSCLEROTIC PLAQUE DELAMINATION: 2D
FINITE ELEMENT MODEL TO SIMULATE PLAQUE PEELING IN
APOE KNOCKOUT AND APOE COLS8 DOUBLE KNOCKOUT
MICE !

Abstract

Finite element analyses using cohesive zone models (CZM) can be used to predict the
fracture of atherosclerotic plaques but this requires setting appropriate values of the
model parameters. In this study, material parameters of a CZM were identified for the
first time on two groups of mice (ApoE™ and ApoE™ Col8") using the measured force-
displacement curves acquired during delamination tests. To this end, a 2D finite-element
model of each plaque was solved using an explicit integration scheme. Each constituent
of the plague was modeled with a neo-Hookean strain energy density function and a CZM
was used for the interface. The model parameters were calibrated by minimizing the
quadratic deviation between the experimental force displacement curves and the model
predictions. The elastic parameter of the plaque and the CZM interfacial parameter were
successfully identified for a cohort of 11 mice. The results revealed that only the elastic
parameter was significantly different between the two groups, ApoE” Col8™ plaques
being less stiff than ApoE”" plaques. Finally, this study demonstrated that a simple 2D
finite element model with cohesive elements can reproduce fairly well the plaque peeling
global response. Future work will focus on understanding the main biological
determinants of regional and inter-individual variations of the material parameters used

in the model.

! Accepted publication in Journal of the Mechanical Behavior of Biomedical Materials, 2016. The
permission from publisher to reproduce it in the dissertation with the full reference is shown in Appendix
D.
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Section 1 — Introduction

Atherosclerotic plaque rupture is a major cause of myocardial infarction, coronary
thrombosis and stroke. Cardiovascular diseases resulting from atherosclerosis are the
leading cause of mortality in both developed and developing countries. Three-fourths of
myocardial infarctions are caused by the rupture of atherosclerotic plaques, affecting
about 1.1 million people in the US annually, with a fatality rate of 40%; 220,000 of these
deaths occur without hospitalization > . Thus, a better understanding of this disease is
needed to develop effective approaches for treatment and intervention. Experimentally,
several studies have focused on developing experimental protocols to quantify the
adhesive strength of the bond between two biological materials®**®™.  To better
understand the plaque delamination process, Wang et al. 2011 developed and applied a
methodology to quantify the adhesive strength between the atherosclerotic plaque and the
underlying vascular wall. The method was applied to the apolipoprotein E knockout
(apoE™) mouse model after 8 months on Western diet. The apoE-deficient mouse is an
animal model frequently used in atherosclerosis research due to the development of

plaques of similar type and distribution as in humans**%**3

and mice lacking apoE (ApoE’
") provided the first practical animal model of hyperlipidemia and atherosclerosis '*. The
study by Wang et al. used the local energy release rate, G, as a quantifiable metric for

direct comparison of plaque separation strengths.

On the computational side, cohesive zone models (CZM) have been applied to biological
tissues to better understand a number of medical problems that involve separation of
tissue layers. The cohesive zone is defined as the infinitesimally thin layer in which

initialization and coalescence of micro-cracks are lumped into a discrete surface, based
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on the elasto-plastic fracture theory of metals’™ ™

, and on the quasi-brittle fracture theory
of concrete “®. This approach is used to model the delamination or separation between
layers. To understand some medical problems where fractures or separations between

83-87 and

layers occur, the CZM has been used in modeling soft biological tissues
bones™> ™8, These studies used CZM with traction-separation cohesive laws. None of
these studies used experimental data obtained from direct mechanical experiments to
identify both cohesive and material parameters at the same time. In the study presented
here, a 2D numerical finite element model was developed to identify material parameters
and cohesive parameters based on experimental data. The method we present could be
applied to any medical problem where separation between layers occurs, such as arterial
dissection or atherosclerotic plaque delamination. For soft biological tissues, Ferrara et al.
2010 used CZM to study the dissection properties of individual arterial tissues®*. Gasser
et al. 2006 used the CZM technique to model the propagation of arterial dissections using
an explicit scheme ®. In their study, they defined the dissection as a gradual process in
which cohesive traction resists separation between two material surfaces. The presence of
collagen in arterial layers motivated the use of this cohesive concept. A recent numerical
study by Leng et al. 2015 also used CZM finite element analyses with an implicit
resolution scheme to simulate atherosclerotic plaque delamination in ApoE knockout
mouse abdominal aorta specimens, placing the cohesive zone along the plaque-media
interface where delamination occurs®. The simulation predictions of force-displacement
curves for the simulated cycles were found to match reasonably well with the

experimental data, especially for the plaque deformation phase, but differences were still

observed during the separation phase and the unloading phase. Leng et al explained these
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differences by the fact that many parameters used in the model were not directly
calculated but taken from existing values in the literature. They also considered that the
use of the Holzapfel-Gasser-Ogden model (HGO) for the plaque could be the reason for

these differences.

In summary, an experimental protocol was developed by Wang et al. to study
atherosclerotic plague delamination as a fracture mechanics problem by quantifying the
energy release rates, but few studies have used CZM to study this problem. Those that did
generally did not consider an explicit resolution approach, and many parameter values

were assumed due to a lack of geometrical data.

In the current study, we focused on developing a 2D finite element modeling and
simulation approach, using an inverse method, to identify material and cohesive
parameters based on experimental delamination tests between atherosclerotic plaque and
the underlying vascular wall in Type VI collagen-deficient and non-deficient (control)
apoE knockout (ApoE™) mice. In this particular problem, an explicit dynamic method of
resolution was used (Abaqus 6.13-1 Explicit). Collagen Type VIII, from the short-chain
non-fibrillar collagen family, is present in small amounts in normal arteries. After injury
and during development of atherosclerosis in experimental animals and humans, the
synthesis of type VIII collagen is dramatically increased * '?°. Thus, comparison of
experimental plaque delamination data from mice belonging to a control group (ApoE™)
and from a collagen VIII deficient group (ApoE™ Col8™) presented an interesting test

case to develop the FE model.
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Section 2 — Materials and methods

I- Experimental protocol

Four C57BI6 congenic ApoE” mice and seven ApoE” Col8” mice were fed
with a high-fat (40% of total calories) diet during six months to develop advanced aortic
atherosclerotic plaques. Mice were euthanized by carbon dioxide asphyxiation and
perfused with heparinized saline at physiological pressure for five minutes. Mouse
carcasses were firmly attached to a plate using adhesive tape. The aorta was opened
longitudinally to visualize the atherosclerotic plaques. The adhesion strength between the
atherosclerotic plaque and the internal elastic lamina (IEL) was measured with cyclic
peeling experiments, based on a previously published protocol®*. A Bose Electroforce
3200 Test Instrument was used to measure the force required for plagque delamination,
and a stereomicroscope equipped with a CCD camera was used to capture images of the
process. The Bose Test Instrument had two grips. One grip clamped the plate which
held the mouse carcass with exposed aorta, and the other grip was attached to
microclamps that held the tip of the plaque, after creating an initial notch to initiate

delamination of the plaque.

Figure 3.1(a) shows a schematic of the experimental test setup. The Bose Electroforce
3200 Test Instrument applied controlled displacements to produce incremental
delamination of the plaque, and the CCD camera acquired images of the newly exposed
area underneath the plaque. Consecutive cycles were run with increasing total
displacement until the plaque completely separated from the vessel wall. Figure 3.1(b)

shows a schematic of the delamination process in an enlarged side view.
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Figure 3.1: Schematic of the experimental setup; (a): the Bose machine prescribes a
displacement (actuator) and records the resulting force (load cell). The micro-clamps are
attached to the actuator and grip the tip of the plaque (b) Schematic of delamination
process

Table 3.1 shows the total number of mice tested from each group (ApoE *~ and ApoE™”
Col8™), with the number of plaques tested (P;: where “i” is the index referring to the
number of the plaque tested from the same mouse) and the total number of loading cycles

obtained from each plaque.

Table 3.1: Number of plaques and cycles obtained from each mouse group

Mouse ID Plaque ID Total Cycles
124 P1 7
145 P1 2
ApoE 158 P1 2
161 P1 2
P2 4
Total 4 5 17
150 P1 1
151 P1 1
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152 P1 3

ApoE™ Col8" 157 P1 2
173 P1 2

174 P1 1

P2 5

P3 4

175 P1 3

Total 22

A- Determination of the fracture energy from each delamination cycle AE

Delamination Test and Data Acquisition Experimental Protocol

Figure 3.2 shows an example of a force-displacement curve obtained during

delamination. The curve is composed of three parts. The first part shows the initial ramp

of the load versus displacement curve. This section is not part of the separation phase but

represents the energy associated with deformation of the plaque before the event of

separation. The first slope discontinuity of the curve represents the beginning of the

delamination process that occurs when the measured load reaches a first maximum and

drops. The second part of the curve is jagged or serrated; this region corresponds to the

delamination process. The third part represents the unloading phase. The area of the

region surrounded by the curve, represented in Figure 3.2, is the energy dissipated

throughout one delamination cycle and it is denoted AE.
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Experimental Force-Displacement curve
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Figure 3.2: A representative image of the raw force vs. displacement data. The area under
the load-displacement curve represents the energy released during one delamination
cycle. The linear region depicted is used to determine the plaque stiffness for each cycle

B- Determination of exposed area 4A

The area exposed at the plaque-lIEL interface during one delamination cycle,
AA, is measured using ImageJ?’ by determining the area before delamination, A;, and the
area after delamination, As. To make this measurement, we applied diluted black marking
tissue dye onto the surface of the plaque and onto its surrounding area before sequential
delamination cycles. Pictures were taken before and after each cycle. At the end of the
cycle the newly exposed area was white (or lighter than the surrounding area). The
difference in colors was used to segment the newly exposed region and to measure its

area AA as defined in Eq. (3.1).

AA = Af — Ai (3-1)
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Three independent reviewers measured AA for each cycle of delamination. Area
measurements that agreed within 10% between reviewers were averaged to determine the
final value of AA for each cycle. Figure 3.3 shows a sample where the white area (newly

exposed region) has been delimited by a yellow line.

Figure 3.3: The estimated AA for one cycle, outlined by yellow (top view)
C- Calculation of G (energy release rate)

The energy release rate, G (N/mm), is a measure of adhesion strength and is
calculated by dividing the energy released during delamination, AE, by the area exposed

during the same delamination, AA as shown in Eq. (3.2):

G = AE/AA
(3.2)
D- Statistical analysis
A Shapiro-Wilk test was used to test the normality of the distributions of G values. For
normally distributed data, a t-test was performed to test for differences between the two

genotypes and for non-normally distributed data, a Mann-Whitney nonparametric test
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was used to compare the median values between the ApoE™ mice and the ApoE™ Col8™

mice.

I11-  Finite-Element model
A- Abaqus Explicit

The explicit solver of the ABAQUS® software’** was used in our simulations.
An explicit solver in finite-element analyses uses an explicit time integration scheme to
solve dynamic problems or quasi-static nonlinear problems. The explicit solver is
particularly suitable for highly nonlinear problems as is the case here with contact and

fracture issues'?>*%,

B- Geometry

Figure 3.4(a) shows a representation of the geometrical parameters used to create
the 2D finite element model for our simulations. Some of these values could be measured
by reference to images and experimental data, and others could not be measured. This
was especially true of geometric parameters related to the aorta (media), such as the total
length, the total width and the thickness. Therefore, we referred to values measured in
other studies of similar problems and we assumed that these values could be applied in
our simulations. The medial width (W) was reported for ApoE™ mice in the study of

Gregersen et al.2007"%*

to be in the range of 2 mm. Medial height (or thickness, Hy,) was
also determined by the same authors to be in the range of 0.08 to 0.16 mm. In our
simulations, Hp, was set equal to 0.15 mm. The total length of the aorta (media) could not

be identified using the experimental pictures, so we assumed that L, was three times

greater than the plaque length. A plate was added under the aorta with a frictionless
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contact to avoid displacement in the negative y-direction, as in the experiments. The total

length of the plate was set equal to the length of the aorta.

Reference point

A S

Figure 3.4 : Schematic representation of the plaque model and the underlying aorta. (a):
Lm represents the aortic media length, Lp the plaque length, Wm the medial width, Wp
the plaque width, Hm the medial height and Hp the maximum plaque height (Lm not
shown to scale); (b): 2D representation of the atherosclerotic plaque (green) attached by
cohesive elements to the underlying aorta (blue), lying on the gray rigid surface (S). The
bottom edge of S, the left & right edges of (A+S), and the top left edge of A were
clamped to simulate experimental testing conditions. The reference point represents the
master node where displacement boundary conditions were applied.

1- Plaque length (Lp) measurement

The plaque length was estimated using histological images. After total
detachment of the plaque from the aorta, the plague was kept for histology studies. The
plague was embedded vertically and cross sections of 5 um were made. Five sections
were collected, then five sections were skipped, and this action was repeated until the
entire plaque had been sectioned. The five collected sections represent a group. Each
histological image was representative of these five sections forming a group. Thus, each
image represented a plaque length of 25 um. Adjacent groups were separated by another

25 pm of sectioned length. Therefore, if there were ten histological images for a

65



particular plaque the estimated length would be 500 um. L, values for each plaque are
shown in Table 3.2 Note here that this calculated length was underestimated since some

tissue shrinkage occurs upon fixation and embedding.

2- Plaque height (Hp) measurement

The plaque height was also calculated using histological images. Assuming that
the middle of the plaque has the largest height, the height of the middle section was
measured and considered to be the maximum height of the plaque. Values are reported in
Table 3.2. Hp and L, were underestimated using this approach, since there was some

tissue shrinkage during fixation and embedding.

3- Plaque width (Wp) measurement

Assuming that the plaque width is the same along the length of the plaque, the
plaque width was measured using the CCD camera images recorded during experiments.

The values are reported in Table 3.2.

Table 3.2: Plague Geometry: (Lp) Plaque Length, (Wp) Plague Width and (Hp) Plaque

Height
Mouse Plaque Lp (mm) Wp Hp
(mm) (mm)

ApoE 7 124 P1 4.65 0.4 0.5
145 P1 1.8 0.45 0.18
158 P1 3.5 0.6 0.32
161 P1 3.2 0.75 0.14
P2 3.2 0.9 0.30
ApoE™ 150 P1 2.8 0.94 0.17
Colg™ 151 P1 4 0.8 0.28
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152 P1 2.8 0.9 0.3
157 P1 3.8 0.4 0.39
173 P1 3.6 0.7 0.13
174 P1 2.5 0.74 0.18
P2 4 0.47 0.11
P3 2.6 0.75 0.14
175 P1 2.8 0.5 0.12

C- Boundary Conditions

Experimentally, the lower face of the aorta was free, since the vessel was secured
across its width only with micro-pins placed a few millimeters above and below the
plaque. These micro-pins are represented in the 2D model as fixed contact points
between the aorta and the underlying plate at the left and right edges of the media. The
underlying plate was added in contact with the aorta to avoid any displacement in the (-y)
direction. Figure 3.4(b) shows a model with a thick plaque (0.4 mm), the aorta, and the
cohesive layer as an extension of the notch of 1 mm created between the plaque and the

underlying aorta.

Figure 3.5 shows four pictures at four different times of the simulation. It shows how the
boundary conditions were assigned. The simulations were run in 2 steps. In the first step,
a vertical displacement of 1 mm was applied on the master node to move the tip of the
plaque to a vertical position, allowing at the same time free horizontal displacement and
free rotation. Once the vertical displacement of 1 mm was reached, a horizontal
displacement was applied in the dissection direction. For each sample, the horizontal

displacement was set equal to the value applied in the respective experiment. This step
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simulated the plaque delamination stage where the data (force-displacement curves) were

collected.
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Figure 3.5: Simulation of the peeling test at 4 different times throughout the test

D- Mesh size

The geometry was meshed using plane strain quadrilateral elements. The cohesive

zone was meshed using only quadrilateral structured elements of cohesive type.

After trying different mesh sizes for the plaque and media (0.01, 0.025, 0.05 mm), it was
found that a mesh size set equal to 0.025 mm gives acceptable results within a reasonable

computational time (less than 2.8% error when compared with the 0.01mm mesh). The
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mesh size for the plate underneath the plaque was larger since this zone was kept rigid in

this problem.

E- Material Model

1- Necrotic core

The necrotic core, which is not as clearly defined in mouse plaques as in human

plaques, was treated as having the same material properties as the fibrous cap.

2- Fibrous cap and underlying aorta

The fibrous cap and the underlying layer were modelled using a Neo-Hookean

model. The strain energy function for a Neo-Hookean model is represented by Eg. (3.3):

_ 1 .
¥ = Caofi-3)+ 5 Uu =12 (33)

Where Cyq is the shear modulus, I; is the first deviatoric strain invariant, D; is the
compressibility parameter, and Jg is the elastic volume ratio. Then, the first term of the
equation represents the isotropic isochoric behavior and the second term represents the

compressibility behavior.

96 , 97

A Neo-Hookean model was used in several studies to represent the response of

arterial tissues in the absence of collagen fiber recruitment. This model is widely used

and accepted for small strains® %

. In addition, in this CZM problem, the elastic
properties of the wall at larger strains are of secondary importance compared to the

cohesive properties *%.
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The underlying plate was modeled as a linear elastic material (Young modulus: 1200

MPa, Poisson ratio: 0.44).

3- Interface between the plaque and the aorta

To represent the separation between the plaque and the underlying aorta, a
bilinear traction separation cohesive law was used. Figure 3.6 depicts this law. It shows
linear elastic loading (OA), followed by linear softening (AB). The normal maximum
contact traction is reached at point A and denoted as To. Separation starts at point A and
ends at point B when the normal contact traction reaches zero. The area under the OAB
curve is the energy released due to complete separation, which is termed the critical
fracture energy per unit area. It is assumed that separation is cumulative and that any

unloading/reloading cycle induces a purely elastic response along line OC.
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Figure 3.6: Traction/separation curve for Bilinear Cohesive Zone model

The parameters of the bilinear traction separation cohesive law to be characterized are:
Kett (MPa/mm), Ty (N/mm) and o (mm) (since &t and Ty are related — see Eq. (3.4) - only

one of them will have to be identified).
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IV-  Parameter identification using an inverse method

Teng et al.**® showed that, for ApoE™ mice, Cy is 1.4 times larger in the fibrous
cap (FC) than in the media and Cyo is 1.6 times larger in the intraplaque
haemorrhage/thrombus (IPH/T) than in the media. In the current study, Cyo in the fibrous
cap was set to twice the value of Cyo in the media. This assumption is generalized in the
rest of the simulations. Moreover, to avoid irrelevant solutions, bounds were defined for

some of the unknown parameters.
Cio: values between 0.01 and 0.5 MPa

To: values between 0.05 and 0.2 MPa, which is consistent with values reported in

the literature®,

Note that 6 and Ty are related to G by Eq. (3.4):

G = (%) Ty X &f
(34)

The values of G were calculated directly from the force displacement curves for

each cycle.

Knn, the initial stiffness of the cohesive elements, does not represent a physically
measurable quantity and is treated as a penalty parameter. The value of this penalty
stiffness must be high enough to prevent interpenetration of the crack faces and to
prevent the introduction of artificial compliance into the model by the cohesive
elements'?®. However, an overly high value can lead to numerical problems. Therefore,

the value considered in the simulations for K, was 30MPa/mm.
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In summary, two parameters of the model had to be identified from the experiments:
the Cjo elastic parameter of the plaque, and the T, cohesive parameter. The inverse
method consisted in finding the values of these two parameters that minimize the
deviation between the experimental and the numerical force-displacement curves. An
initial matrix containing all combinations of parameter values, Xinitiai= [C10, To] is defined,

and a cost vector was defined such that:

COStvector(j) = Fgim (]) - Fexp (]) (3.5)
Where Fg;,,, (j) is the force value predicted by the finite element model, F,,(j) is the
interpolated experimental force at the same displacement value, and j defines the index of

the simulated point. Then the cost function value was calculated as in Eg. (3.6):

[COStvector (]) X COStz;ector (])] (3-6)

cost = 2

E, exp

Where Fe,q[,2 represents the square of the average of the interpolated experimental force.

Finally, the minimum cost value was derived. Figure 3.7 shows an example of the
pattern of the cost function for sample 173P1 with respect to the variations of Cyo and To.

It appears that the cost function has a unique minimum for T¢=0.09.
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Variation of cost values
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Figure 3.7: Variation of cost function values with respect to C4o, with T¢=0.05-0.10 MPa
for the sample 173P1 ApoE™ Col8”"

V- Energy Balance
At the end of each simulation, an energy balance study was performed to verify
that the solutions obtained satisfy quasi-static mechanical equilibrium. The kinetic energy

must be negligible compared to the strain energy to satisfy this criterion.

Section 3 — Results

I- Experimental results

Results showed that the majority of G values were in the range [0.005-0.02]
N/mm for both groups. The minimum value for both groups was 0.003 N/mm and
belonged to the ApoE Col8™” group, and the highest value was 0.095 N/mm and
belonged to the same group. To compare the differences in parameters between both

groups, a statistical analysis was applied. Table 3.3 summarizes the averages and the
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standard deviations obtained for the energy release rate (G), the slope of the linear part of
the force-displacement curves, and the failure loads for each cycle. Average G values for
both groups seemed to be similar with relatively large standard deviations for both groups
(0.015N/mm for ApoE™ group and vs 0.016 N/mm for ApoE™ Col8" group). G values
for both genotypes were not normally distributed; therefore, a Mann-Whitney test was

applied and showed that the values were not significantly different between groups.

Table 3.3: Statistical parameters for energy release rate, stiffness, and failure load values
for ApoE-/- and ApoE-/- Col8-/- mice

G [N/mm]
ApoE " ApoE"Colg™
Average values 0.015 0.016
Median 0.01 0.01
Standard deviation 0.011 0.018
First quartile 0.008 0.0075
Third quartile 0.018 0.015

- Numerical results

After applying boundary conditions on the numerical model, the force-
displacement curves obtained had the same shape as the experimental ones. Figure 3.8
shows a typical force- displacement curve obtained after simulation and after identifying
the material parameters for one of the samples (173-P1). It shows that the curve was
composed of three different segments as in experimental load-displacement curves
(Figure 3.2). By comparing the changes in specimen geometry obtained after simulation
(Figure 3.5) and the numerical curves, we could identify the mechanical process related

to each part of the curve, as shown schematically in Figure 3.8.
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Figure 3.8: Force-displacement curve obtained after simulation for 1 sample. The curve
consists of three segments: 1 represents the deformation of the attached peel arm of the
plaque, 2 represents the separation phase where the cohesive elements are deleted to
simulate the separation, and 3 represents the unloading phase. Segment 2 displays
serrations related to the deletion of cohesive elements

The first segment (part 1) represents the deformation of the attached peeling arm of the
plague when the horizontal boundary condition was applied and before any separation
occurred. The second segment (part 2) represents the separation between the plaque and
the media layer. There were drops (a) and then increases (b) in force creating serrations
as shown in Figure 3.8. Each drop in force represents a complete deletion of some
cohesive elements because they had reached the maximum separation value. Then the
force increased, which indicates that more cohesive elements were in the process of
complete separation until they reached the maximum separation value and again created
the release in force represented by the drops in Figure 3.8. The process of separation
continued until the total horizontal displacement value was reached. The third segment
(part 3) represents the unloading phase where an opposite horizontal displacement was

applied on the attached arm of the plaque to take it back to the initial position. Figure 3.9
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shows the results of the best-fit simulations with experimental curves for the first cycles
from 4 different plaques from the ApoE™ mouse group. It also shows the energy values
during the simulations of the peeling test. In all cases the kinetic energy is negligible
compared to the strain energy, which indicates that the solutions obtained satisfy quasi-

static mechanical equilibrium.

Figure 3.10 shows the best-fit parameters for the first cycles from 4 different plaques
from the ApoE™ Col8” mouse group. It also shows the energy values during the peeling
test calculated from the simulation, verifying that the Kinetic energy is negligible

compared to the strain energy.

The Ty (cohesive parameter) and C,o (material parameter) best fit values are reported in
Figure 3.11. Figure 3.11 shows the average values of G, T and Cyo obtained for ApoE™
samples and ApoE™ Col8 7~ samples. Average values of G for the first group were higher
than for the second. T, values show a slight variation between the two groups. Cio
average values between groups show an important difference, with the higher value for

the ApoE™ group.

A statistical test is needed to check for significant differences in the three mechanical
parameters between the two mouse groups. However, due to limitations in the number of
tested samples, this statistical test could not be applied. Therefore, we investigated the
sample size needed to identify significant differences between groups for a T-test with
a=0.05. Alpha is defined as the Type | error probability for a two-sided test (the

probability of false rejection of the null hypothesis).
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Figure 3.9: Experimental vs simulated force-displacement curves and strain vs Kinetic
energy for the first delamination cycles from four ApoE™ mice
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Figure 3.10: Experimental vs simulated force-displacement curves and strain vs Kinetic

energy for the first delamination cycles from four ApoE *~ Col8™ mice
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Figure 3.11: Histograms of average identified values and standard

deviations for (a) G, (b) Ty, and (c) Cyo
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We found that 28 samples would have to be tested from each group with this amount of
variation to determine whether there is a significant difference in G values between the
two groups, while only 10 samples from each group would be needed to determine
whether the differences were significant for C;, values between both groups. The test was
not applied for Ty since the average values were similar. Fewer samples would be

required to find significant differences between groups for C1o than for G (or Ty).

Section 4 — Discussion

- Discussion of experimental results

Table 3.3 shows the average and standard deviation for G values obtained in
both mouse genotypes used in our experiments. We can see that the average value of G
for ApoE”"Col8 " mice was slightly higher than for ApoE”" mice (0.016 vs 0.015 N/mm).
However, the differences between the two genotypes were not significant. This result did

not confirm the findings of Lopes et al 127

. These authors reported that deficiency of
collagen VIII may affect the stability of the plaque by mediating fibrous cap formation.
In fact, Lopes et al. 2013 **" observed in their study that collagen V111 in the absence of
apoE increases smooth muscle cell proliferation and migration. Consequently, formation
of a thicker fibrous cap can be observed in the presence of collagen VIII, and a thinner

cap is formed in its absence. A thinner fibrous cap has been previously associated with

plaque instability in human patients®’.

To check whether the duration of Western diet feeding could be a factor explaining these
results (i.e., non-significant differences), control ApoE” mice were compared for two
cases. In the first, mice were fed the Western diet for 8 months and in the second they

were fed the same diet for 6 months. Wang et al. 2011* quantified the rupture resistance
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of atherosclerotic plaques in ApoE™ mice after 8 months on Western diet, using local
delamination experiments and the corresponding local energy release rate (G). In the
present study, mice were tested after 6 months on Western diet. G values obtained after 8
months on Western diet, as reported in Wang et al. 2011*, varied between 0.005 N/mm
and 0.072 N/mm with an average value of 0.024 and SD of 0.018. Figure 3.12 shows the
difference in G values between ApoE” mice fed Western diet for 6 months (present
study) vs. 8 months (Wang, et al. 2011). The average G value in the 8- month group
(0.024N/mm) was higher than that for the 6-month group (0.015N/mm). This result may
be due to the plaque fibrosis (collagen deposition) which would increase the energy
required to cause delamination of the plaque (Wang, et al., 2013). Histological studies
could determine more accurately the reason for the variation in G values with duration of
Western diet feeding. Our study shows that the energy release rate is unaffected by the
absence of type VIII collagen and suggests that other types of collagen may be
responsible for the differences in adhesion strength previously reported, or simply that the

sample size is not sufficiently large to prove the real role of collagen VIII deficiency.

- Discussion of numerical results

In this work we identified for the first time material parameters and cohesive
parameters for atherosclerotic plaques in two groups of ApoE™ mice. To accomplish this,
we developed an inverse method to calibrate a finite-element model against experimental
force/displacement curves. These force/displacement curves were obtained with our

specific delamination test*.
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Figure 3.12: Average and standard deviation of the G values obtained for the 8 months
and 6 months ApoE™ mouse groups

An explicit time integration scheme was used in these FE simulations for several reasons.
Although implicit time integration schemes have shown good agreement with
experimental results in one published study®, there were still some limitations in
modeling contacts and in the selection of a bilinear cohesive law. The presence of more
severe contact conditions in our particular model created many convergence issues when
using an implicit scheme. Leng et al. 2015° simulated the contact between the sample and
the support using springs to avoid direct contacts and thus sidestepped these convergence
issues. In our case we used frictionless contact, which was closer to experimental

conditions.

In addition, we also observed that some convergence issues occurred at high G values

with implicit resolution. The use of an explicit resolution scheme was able to give
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acceptable results for all samples despite the high G values and despite the presence of
contacts between the support and the sample. Explicit schemes have been applied in
several published studies where cohesive zone models were used to study dissection or
fracture in soft biological tissues®* %% Recent studies that reviewed the advantages
and limitations of using a cohesive zone model to study fracture showed that a precise
determination of material parameters driving the traction-separation relationship is
essential for predictive CZM, which justifies the identification of parameters

characterizing the traction-separation model and the surrounding material*? - 12 130. 131

The results shown in Figure 3.9 and Figure 3.10 utilize the best-fit parameters identified
for a maximum agreement between experiment and simulation. The agreement was
acceptable even though some differences remained, especially for the unloading phase.
Serrations during the separation phase were always present in the experiments, but they
were not reproduced with the implicit scheme®. Using the explicit scheme permitted
reproducing these serrations during the separation phase. The occurrence of these
serrations or the local drop of experimental force values may be explained by the fact that
there are fibers bridging the plaque and the underlying artery, and sudden drops in force
could be related to fiber breakage. This is not the case numerically, since the fibers were
not taken into consideration in this model. Numerically, the serrations represent the
propagation of delamination knowing that each drop in force means that the delamination
has propagated a certain length, then the force increases to create another delamination.
In summary, the explicit resolution is interesting as a means to simulate the serrations

during the separation phase.
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In our simulations we reduced the errors in the unloading phase, as is evident in
some of the models (161-P1, 157-P1 and 173-P1), by optimizing the application of
boundary conditions to represent exactly what was happening in the experiments.
However, in some simulations, deviations from the experimental data in the unloading
phase could still be observed. These discrepancies could be explained by the fact that a
Neo-Hookean strain energy density function was used in our 2D simulations. Leng et al.
2015° used a HGO strain energy density function for the material behavior and still had
fitting issues for the unloading phase, which tends to confirm that improvements for the
unloading phase have to be considered for future work. Moreover, the differences
between simulations and experimental data may also be due to the assumptions made for
some material parameters. Finally the Neo-Hookean strain energy density function works
reasonably well for fitting the data, and this can be attributed to relatively low values of
elastic strains preceding the beginning of delamination.

Values in the range [0.02-0.3] MPa were found for the C;o parameter. Assoul et al. 2008
132 jdentified the elastic moduli of abdominal and thoracic aortas of 2 mm in diameter
from adult Wistar rats and found values in the range [0.2-2.8] MPa, which is equivalent
to Cyp values in the range [0.035-0.5], since in general C10=E/6. The values obtained for
ApoE™ mice were in this range, but the values for ApoE™ Col8” mice were lower, which
could be explained by the absence of collagen type VIII. This result is physiologically
meaningful, as the deficiency of collagen VIII may affect collagen deposition and alter

3 127 Advanced atherosclerotic

fibrous cap formation, as reported by Lopes et al. 201
plaques typically contain alipid pooland a fibrous cap. The lipid pool in the

atherosclerotic plaque contains several constituents (phospholipids, cholesterol esters,
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cholesterol crystals and other lipids) **. Over time, liquid cholesterol esters may be
transformed into a crystalline form, which could lead to a stiffer lipid pool ***. This
phenomenon might also explain the lower plaque stiffness in Col8 deficient mice due to
the larger lipid fraction reported for this genotype. Few experimental data on the

mechanical properties of lipid pools are available **

. In our experiments, based on
histological analysis, we observed that the lipid pool was always combined with other
constituents. It was found using in vitro ultrasound elastography that the average elastic
modulus of lipid was 81+40 kPa for 9 human iliac arteries, but increased up to
1.0+0.63 MPa when there was a mixture of smooth muscle cells and collagen fibers with

the lipid**®. Based on this study, we can justify merging the necrotic core and the fibrous

cap into a single layer.

Our findings suggest that the adhesion strength of mouse atherosclerotic plaque is not
affected by the absence of collagen VIII. We have also shown that the ApoE” Col8”
plaques are less stiff than the ApoE™ plaques, which may be caused by the lack of type
VIII collagen or by impaired migration of SMCs and resulting reduction in matrix

deposition, as previously reported.

Notwithstanding these interesting conclusions, refining the model would probably
permit reaching a better agreement between experimental and numerical curves. Indeed,
the model predictions obtained with the identified parameters have shown some
discrepancies with regard to the experimental results. A 3D geometrical model
reconstructed with the actual plaque geometry and an anisotropic nonlinear material
model taking into account the regional histology would certainly provide improved

accuracy. The CZM technique seems to be a fairly good approach to gain a better
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understanding of delamination and shows a very good predictive capability in most cases,
which is a convincing result for this proof-of concept study. The use of an explicit
scheme for simulations allowed us to capture the successive drops in load during the
delamination process, but more studies have to be performed to correlate the numerical
curves with the experiments by tracking the behavior of both experimental and numerical

models in parallel to clearly identify the process leading to these sudden drops in force.

Section 5 — Conclusion

A cohesive zone model (CZM) approach was applied to simulate atherosclerotic
plaque delamination experiments. Experiments were carried out on two mouse groups:
ApoE™ and Apo”” Col8”". The experimental results showed that there are non-significant
differences in G (critical energy release rate) values between the 2 groups. We then
implemented a 2D finite element model in order to have a better understanding of the
delamination process. An explicit resolution scheme was used to overcome limitations of
implicit resolution methods applied previously to similar problems. An inverse method
was used to identify two material parameters: one related to the interface (cohesive
parameter) and one elastic parameter related to the plague constitutive behavior. Results
showed a very good agreement between experimental and numerical load-displacement
curves after identification of the best-fit parameters. Average values obtained for both
parameters revealed that only the elastic parameter could be considered different between
the two groups. Col8”"ApoE™ plaques were less stiff than ApoE™ plaques, which may be
attributed to the lack of type VIII collagen or to impaired migration of SMCs and the

127

resulting decrease in matrix deposition™'. Interfacial properties were non-significantly

different. These results suggest that collagen VIII does not play a significant role in
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determining plaque adhesion strength to the underlying vessel wall. These trends deserve
statistical confirmation with more experiments to be performed. Although the present
study led to these interesting conclusions, refining the model would probably permit a
better agreement between experimental and numerical curves. To this end, we will
consider in future studies a refinement of the model by creating 3D finite-element meshes
taking into account fiber orientation, and a refinement of the CZM model including
regional variations of interfacial properties for a more faithful prediction of the

biomechanical response during delamination.
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CHAPTER 4 CONCLUSION AND FUTURE WORK

Despite the existence of many studies on atherosclerotic plaque rupture problems, few
were focused on the mechanical process of rupture. The work presented in this thesis had
as its objective to use experimental and numerical approaches in order to have a better
understanding of the process. For this, an experimental protocol was developed to
quantify the energy release rate needed to create delamination in type VIII collagen
deficient and non-deficient ApoE™ mice, followed by the creation of a 2D numerical

model to simulate the delamination.

This work was preceded by a first numerical study applied to an arterial
dissection problem due to the problem similarity, using the coronary arterial dissection
data obtained by Wang et al. 20143, In this study, cohesive elements were used to
simulate the interface between the dissected layers. The main purpose was to check if the
use of an implicit scheme could provide accurate results, and to determine whether the
differences between the cohesive parameters in dissection through media and through
intima could be considered significant, as observed experimentally on G values between
both cases. Results showed that using a cohesive zone model and applying an implicit
scheme gave accurate results with some limitations related to convergence in the case of
high G values and complex geometrical forms. The cohesive parameters identified were
non-significantly different. This result could be explained by the fact that few cycles from

each sample were considered due to limitations related to the model. This first result
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showed that the use of cohesive elements with a simple traction separation law applied to
biological tissues was possible, but optimizations had to be implemented to increase the
quality of the results and to ensure convergence while using more complex geometrical
forms and in the presence of contacts.

An experimental protocol was then applied on two mouse groups with two
different genotypes to quantify the energy release rate G needed to create the separation
between the plaque and the aorta. G values were compared in both groups, the control
group ApoE™ and the group with collagen type VIII deficiency ApoE” Col8”. Results
showed that there were non-significant differences in G values between the two mouse

groups.

A 2D numerical model was then created using cohesive elements to simulate
plaque delamination using an explicit scheme to avoid limitations met in the numerical
model for arterial dissection. An inverse method was applied to identify cohesive
parameters and Neo-Hookean parameters for the plaque. The aim was to check if the
differences between the parameters related to the plaque and to the cohesive elements
were different between the two mouse groups. Results showed that C,o values for ApoE -
" were higher than Cyo for the Col8 "ApoE 7~ mice. But cohesive parameters were not
different. This suggested that collagen type VIII does not play a significant role in

determining plaque adhesion strength but may affect the plaque mechanical properties.

Experimentally, the work could be improved by refining the protocol,
especially by adding a camera capturing the delamination process from a cross
sectional plane of view. This would help to provide a better estimate of some

geometrical parameters with more precision to be used in the numerical model.
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Calculating the area exposed after each cycle of delamination was challenging, thus
some improvements are planned in the calculation of this area by using a RGB
camera. We also plan to complete this by analyzing histological pictures (in progress)
to have all the elements to understand the delamination process and to correlate G

values with microstructure.

All the work presented previously was for the first cycle of each peeling test.
Concerning the remaining cycles, a trial of two cycles from one plaque (152-P1) was
carried out to check if using the same values obtained after parameter identification could
give a good match between the experiments and simulations for the second cycle. The
numerical results for two successive cycles are represented in Figure 4.1. While the first
cycle was well calibrated, the second cycle was not. This result could be explained by the
heterogeneity of the plaque. Cycle 2 had probably a different G value than cycle 1, and
considering regional variations of the fracture properties in the numerical model is

certainly the most important challenge of our future work.

Numerically, improvements are also possible to create a more realistic model.
Simulations showed that an explicit scheme can give fairly good results, but there is a
need to have a more detailed study of all factors that may affect the results, as well as
models with more refined meshes. A 3D model would take into consideration actual fiber
orientation and a more realistic material behavior would help to simulate more faithfully
the experimental response. Also, the use of the simple bilinear cohesive traction
separation law was successful is some cases, but different authors who used cohesive
zone models preferred to use alternative forms of cohesive law for more precision.

Identification of material parameters was achieved here by calibrating iteratively the
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models against the experimental curves. This was possible due to the simplicity of the

model. If more complex models were used in the future, refined inverse algorithms

should be considered for the identification of material parameters>"*%,

152-P1 (2cycles)
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Figure 4.1: Experiment vs numerical load displacement curves for two successive cycles
using same material parameter values obtained for the first cycle
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APPENDIX A: NUMERICAL STUDY OF DELAMINATION
THROUGH HUMAN AORTIC MEDIA USING COHESIVE
ELEMENTS AND TWO DIFFERENT MATERIAL LAWS

Abstract accepted at the Biomedical Engineering Society 2012 Annual Meeting. (Co-
authors: Stephane Avril, Pierre Badel, Michael Sutton, Susan Lessner)

Introduction: Traumatic arterial dissection results in separation of the different
layers of the arterial wall, with the creation of a false lumen. Separation could occur
between arterial layers or within the layers. The energy release rate during separation is
defined as the difference between the variation of total energy applied with respect to the
crack length (AT/Aa) and the variation of the stored energy (strain energy) with respect to
crack length (AS/Aa) (Griffith’s energy balance). In order to explore the dissection
properties of human coronary arteries, experimental peeling tests were performed. Using
measured load-displacement curves, the fracture energy was calculated as the incremental
area under the load-displacement curves, neglecting the contribution of the strain energy.
The aim of this study is to determine conditions when the contribution of strain energy
can properly be neglected in our experimental system. To do so, finite element
simulations that incorporate cohesive elements to represent the fracture interface were
performed in an effort to better estimate the fracture energy using our experimental

curves.
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Materials and Methods: The model used for simulations is a 2D model of an

opened segment of human coronary artery, 0.4mm thick and 8mm long, with the

media comprising the upper two-thirds and the adventitia the lower third of the vessel
wall. The media itself is composed of two layers of equal thickness, separated by a zero-
thickness layer of cohesive elements, defining an upper part (media) and lower part
(adventitia and media) of the specimen. A linear elastic model is used for both the media
and adventitia, using as Young’s modulus and Poisson’s ratio 0.8MPa and 0.45 for the
media, and 0.4MPa and 0.45 for the adventitia, respectively. The assumed cohesive zone
law is a bilinear function (traction-separation law) with G, values of 0.01, 0.005 and
0.0025N/mm for the simulations, which fall within the range of values obtained
experimentally during peeling of human coronary artery media. The cohesive parameters
defined are the stiffness (K) of the elastic part, the maximum stress at separation
(corresponding to a separation value Up), and the maximum separation value
corresponding to total damage of the cohesive element (U;). Boundary conditions
imposed on the specimen include clamping of the bottom edge and a horizontal
displacement condition applied on the left edge of the upper part. To simulate the initial
flaw, a material separation is created at the left edge between the media layers before

beginning the peeling simulation, consistent with our experiments.

Results and Discussion: To ensure convergence, we performed a parametric
study of cohesive parameters, which indicated that these parameters should meet certain
conditions: K should be in the same range as the stiffness values of the surrounding bulk
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material, and the ratio U+/U, should be on the order of 100. Figure A.1(a)shows the strain
energy and total energy vs crack length for G.=0.0025 N/mm (a) Figure A.1(b) presents
the average ratio of (AS/Aa) / (AT/Aa) with respect to the critical fracture energy values
over a total crack length of 2mm for the three G. values. This ratio decreases with
increasing values of critical fracture energy. The variation of strain energy constitutes 6%
of the variation of the total energy applied with respect to the variation of the crack length
for G¢=0.0025N/mm, decreasing to 4.5% for G.=0.01 N/mm. Previous studies by Wang,
et al. 2011 estimated that the strain energy constitutes 10% of the total energy. This
numerical study confirms that the variation of strain energy with respect to crack length
can be reasonably neglected compared to the variation of total energy with respect to

crack length, particularly at G, values of 0.005 N/mm and above.
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Figure A.1: (a) Example of the strain energy and the total energy curves vs crack length,
for Gc = 0.0025 N/mm (b) the average ratio of (AS/Aa) / (AT/Aa) vs. Gc values

Conclusions: A numerical study using the cohesive element technique was
performed to estimate the contribution of the strain energy during experimental arterial
dissection. The results obtained show that the contribution of strain energy to total energy
required for dissection becomes relatively more important as fracture energy, Gc

decreases. This result can be applied to our future experiments studying the delamination
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of atherosclerotic plaques to provide a criterion for neglecting the contribution of strain

energy.
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APPENDIX B: AA, AE AND G VALUES FOR ALL SAMPLES

After applying the experimental protocol described above, the AA, AE and G values
are reported for every cycle in Table B.1 for the control and in Table B.2 for the type VIII
collagen deficient. Cycles for which there was no crack propagation or cycles for which

the newly exposed area could not be measured with enough accuracy are not reported.

Table B.1: AA, AE and G values for the ApoE-/- mouse group

Mouse Plaque & [Average A |E@J) G (J/m?)
Cycle (mm?)
number
12-A-124 P1 C2 1.62E-01 6.44E-06 39.78
12-A-124 P1 C3 6.11E-01 3.68E-06 6.02
12-A-124 P1 C4 1.89E-01 7.84E-06 41.50
12-A-124 P1 C7 8.30E-02 1.10E-06 13.28
12-A-124 P1 C8 2.66E-01 5.06E-06 19.04
12-A-124 P1 Ci11 4.52E-01 3.77E-06 8.36
12-A-124 P1 C5 5.36E-01 5.44E-06 10.15
13-A-145 P1 C2 1.96E-01 3.16E-06 16.14
13-A-145 P1 C3 4.97E-01 3.99E-06 8.03
13-A-157 P2_C2 3.66E-01 6.76E-06 18.47
13-A-157 P2_C3 3.51E-01 1.21E-05 34.45
P1 C2 5.01E-01 5.44E-06 10.86
P1 C3 7.07E-01 6.04E-06 8.54
P1 C4 1.11E-01 5.96E-06 53.90
13-A-161 P1 C4 1.12E-01 2.01E-06 18.03
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13-A-161 P1_C6 6.47E-01 9.16E-06 14.17
13-A-161 P2_C2 1.16E-01 3.73E-06 32.28
13-A-161 P2_C3 2.44E+00 1.00E-05 411
13-A-161 P2_C4 1.09E+00 7.26E-06 6.66
13-A-161 P2_C5 2.23E+00 1.01E-05 4.55
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Table B.2: AA, AE and G values for the ApoE-/- Col8 -/- mouse group

Mouse Plaque & [Average A |E(@) G (J/m?)
Cycle number | (mm?)
13-C8A-150 |[P1_C3 3.07 E-01 2.99 E-06 9.75
13-C8A-151 P1 C2 249 E-01 8.23 E-06 33.05
13-C8A-151 P1 C3 411 E-01 8.45 E-06 20.57
P1 C3 1.6 E-O01 1.12 E-06 7.01
P1 C4 3.215 E-01 2.94 E-06 9.17
13-C8A-157 P1 C3 1.4165 E-01 10.62 E-06 7.49
13-C8A-157 P1 C4 6.065 E-01 8.91 E-06 14.70
13-C8A-173 P1 C3 5.28 E-01 10.45 E-06 19.79
13-C8A-173 P1 C5 3.76 E-01 4.97 E-06 13.24
13-C8A-173 P1 C6 2.23 E-01 7.08 E-06 31.75
13-C8A-174 P1 C3 4.95 E-01 7.75 E-06 15.65
13-C8A-174 P2_C6 4. E-01 6.04 E-06 15.10
13-C8A-174 P2 _C7 2.7 E-01 0.81 E-06 3.013
13-C8A-174 P2_C9 3.135 E-01 2.35 E-06 7.52
13-C8A-174 P2_C10 1.26 E-01 1.61 E-06 12.83
13-C8A-174 P2 _C11 1.99 E-01 1.40 E-06 7.04
13-C8A-174 P3_C3 6.545 E-01 6.23 E-06 9.53
13-C8A-174 P3 C4 2.7 E-01 1.77 E-06 6.57
13-C8A-174 | P3_C5 4.855 E-01 3.39 E-06 6.99
13-C8A-174 P3_C7 4.435 E-01 5.78 E-06 13.04
13-C8A-175 | P1_C3 2.59 E-01 2.55 E-06 9.84
13-C8A-175 P1 C4 1.105 E-01 3.94 E-06 35.71
13-C8A-175 P1 C5 4,955 E-01 5.15 E-06 10.40
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APPENDIX C: LOAD VS DISPLACEMENT CURVES RELATED TO
EACH PLAQUE

The load vs displacement curves related to each plaque are represented in Figure
C.1, Figure C.2 and Figure C.3.
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Figure C.1: Force vs Displacement curves obtained experimentally for the 5 plaques
tested from the ApoE-/- mouse group
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Figure C.2: Force vs Displacement curves obtained experimentally for 6 plaques tested
from the ApoE-/- Col8 -/- mouse group
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Figure C.3: Force vs Displacement curves obtained experimentally for the remaining 3
plaques tested from the ApoE-/- Col8 -/- mouse group
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